Is gravitational mass of a composite quantum body equivalent to its energy?

Andrei Lebed
  • 1 Department of Physics, University of Arizona, 1118 E. 4-th Street, Tucson, AZ, 85721, USA
  • 2 L.D. Landau Institute for Theoretical Physics, RAS, 2 Kosygina Street, 117334, Moscow, Russia

Abstract

We define passive gravitational mass operator of a hydrogen atom in the post-Newtonian approximation of general relativity and show that it does not commute with energy operator, taken in the absence of gravitational field. Nevertheless, the equivalence between the expectation values of passive gravitational mass and energy is shown to survive for stationary quantum states. Inequivalence between passive gravitational mass and energy at a macroscopic level results in time dependent oscillations of the expectation values of passive gravitational mass for superpositions of stationary quantum states, where the equivalence restores after averaging over time. Inequivalence between gravitational mass and energy at a microscopic level reveals itself as unusual electromagnetic radiation, emitted by the atoms, supported and moved in the Earth gravitational field with constant velocity using spacecraft or satellite, which can be experimentally measured.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] R. Colella, A. W. Overhauser, S. A. Werner, Phys. Rev. Lett. 34, 1472 (1975) http://dx.doi.org/10.1103/PhysRevLett.34.1472

  • [2] V. V. Nesvizhevsky et al., Nature 415, 297 (2002) http://dx.doi.org/10.1038/415297a

  • [3] S. W. Hawking, Nature 248, 30 (1974) http://dx.doi.org/10.1038/248030a0

  • [4] W. G. Unruh, Phys. Rev. D 14, 870 (1976) http://dx.doi.org/10.1103/PhysRevD.14.870

  • [5] L. D. Landau, E. M. Lifshitz, The Classical Theory of Fields, 4th edition (Butterworth-Heineman, Amsterdam, 2003)

  • [6] C. W. Misner, P. Putnam, Phys. Rev. 116, 1045 (1959) http://dx.doi.org/10.1103/PhysRev.116.1045

  • [7] K. Nordtvedt, Class. Quantum Grav. 11, A119 (1994) http://dx.doi.org/10.1088/0264-9381/11/6A/009

  • [8] S. Carlip, Am. J. Phys. 66, 409 (1998) http://dx.doi.org/10.1119/1.18885

  • [9] D. Park, Introduction to the Quantum Theory, 3rd edition (Dover Publications, New York, 2005)

  • [10] A. G. Lebed, arXiv:1111.5365v1 [gr-qc]; arXiv:1205.3134v1 [gr-qc]

  • [11] A. G. Lebed, In Proceedings of the 13th Marcel Grossmann Meeting on Recent Developments in Theoretical and Experimental General Relativity, July 1–7, 2012, Stockholm, Sweden (World Scientific, to be published) [arXiv:1208.5756v1 [gr-qc]]

  • [12] C. W. Misner, K. S. Thorne, J. A. Wheeler, Gravitation (W.H. Freeman and Co, San Francisco, 1973)

  • [13] E. Fischbach, B. S. Freeman, W. K. Cheng, Phys. Rev. D 23, 2157 (1981) http://dx.doi.org/10.1103/PhysRevD.23.2157

  • [14] F. Pinto, Phys. Rev. Lett. 70, 3839 (1993) http://dx.doi.org/10.1103/PhysRevLett.70.3839

  • [15] L. Parker, Phys. Rev. Lett. 44, 1559 (1980) http://dx.doi.org/10.1103/PhysRevLett.44.1559

  • [16] L. Parker, Phys. Rev. D 2, 535 (1981) http://dx.doi.org/10.1103/PhysRevD.24.535

OPEN ACCESS

Journal + Issues

Search