Non-adiabatic interactions in charge transfer collisions

Marie-Christine Bacchus-Montabonel 1 , Emese Rozsályi 2 , Erika Bene 3 , Gábor Halász 4 , and Ágnes Vibók 2
  • 1 Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon, F-69622, Villeurbanne Cedex, France
  • 2 Department of Theoretical Physics, University of Debrecen, P.O. Box 5, H-4010, Debrecen, Hungary
  • 3 Institute of Nuclear Research, Hungarian Academy of Sciences, P.O. Box 51, H-4001, Debrecen, Hungary
  • 4 Department of Information Technology, University of Debrecen, P.O. Box 12, H-4010, Debrecen, Hungary

Abstract

An analysis of the charge transfer mechanism in the collision of multiply charged ions with molecular and biomolecular targets is performed, considering the non-adiabatic interactions between the molecular states involved. Collisions of doubly charged C 2+ ions on small molecular targets, CO and OH, have been investigated, together with the analysis of charge transfer between C 4+ ions on uracil and halouracil biomolecular targets. The process is studied theoretically by means of ab-initio molecular calculations followed by a semi-classical treatment of the collision dynamics. The influence of rotational couplings is discussed with regard to the collision energy. Strong anisotropic and vibration effects are pointed out.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] B. Lasorne, M.C. Bacchus-Montabonel, N. Vaeck, M. Desouter-Lecomte, J. Chem. Phys. 120, 1271 (2004) http://dx.doi.org/10.1063/1.1633759

  • [2] M.C. Bacchus-Montabonel, N. Vaeck, B. Lasorne, M. Desouter-Lecomte, Chem. Phys. Lett. 374, 307 (2003) http://dx.doi.org/10.1016/S0009-2614(03)00606-7

  • [3] N. Vaeck, M.C. Bacchus-Montabonel, E. Baloïtcha, M. Desouter-Lecomte, Phys. Rev. A 63, 042704 (2001) http://dx.doi.org/10.1103/PhysRevA.63.042704

  • [4] M. Gargaud, F. Fraija, M.C. Bacchus-Montabonel, R. McCarroll, J. Phys. B 27, 3985 (1994) http://dx.doi.org/10.1088/0953-4075/27/17/022

  • [5] R.A. Young Jr., J. Yarkony, J. Chem. Phys. 123, 084315 (2005) http://dx.doi.org/10.1063/1.2006094

  • [6] D.R. Yarkony, Rev. Mod. Phys. 68, 985 (1996) http://dx.doi.org/10.1103/RevModPhys.68.985

  • [7] B. D. Michael, P. D. O’Neill, Science 287, 1603 (2000) http://dx.doi.org/10.1126/science.287.5458.1603

  • [8] D.E. Woon, T.H. Dunning Jr., J. Chem. Phys. 98, 1358 (1993) http://dx.doi.org/10.1063/1.464303

  • [9] E. Baloïtcha, M. Desouter-Lecomte, M.C. Bacchus-Montabonel, N. Vaeck, J. Chem. Phys. 114, 8741 (2001) http://dx.doi.org/10.1063/1.1367378

  • [10] M.C. Bacchus-Montabonel, C. Courbin, R. McCarroll, J. Phys. B 24, 4409 (1991) http://dx.doi.org/10.1088/0953-4075/24/20/011

  • [11] F. Fraija, A.R. Allouche, M.C. Bacchus-Montabonel, Phys. Rev. A 49, 272 (1994) http://dx.doi.org/10.1103/PhysRevA.49.272

  • [12] R.J. Allan, C. Courbin, P. Salas, P.J. Wahnon, J. Phys. B 23, L461 (1990) http://dx.doi.org/10.1088/0953-4075/23/16/007

  • [13] P.C. Stancil, B. Zygelman, K. Kirby, In: F. Aumayr, H. P. Winter (Ed.), Photonic, electronic, and atomic collisions (World Scientific, Singapore, 1998) 537

  • [14] E. Bene, Á. Vibók, G.J. Halász, M.C. Bacchus-Montabonel, Chem. Phys. Lett. 455, 159 (2008) http://dx.doi.org/10.1016/j.cplett.2008.02.094

  • [15] E. Bene, P. Martínez, G.J. Halász, Á. Vibók, M.C. Bacchus-Montabonel, Phys. Rev. A 80, 012711 (2009) http://dx.doi.org/10.1103/PhysRevA.80.012711

  • [16] M.C. Bacchus-Montabonel, Astron. Nachr. 333, 292 (2012) http://dx.doi.org/10.1002/asna.201211660

  • [17] E. Rozsályi, E. Bene, G.J. Halász, Á. Vibók, M.C. Bacchus-Montabonel, Phys. Rev. A 81, 062711 (2010) http://dx.doi.org/10.1103/PhysRevA.81.062711

  • [18] E. Rozsályi, E. Bene, G.J. Halász, Á. Vibók, M.C. Bacchus-Montabonel, Phys. Rev. A 83, 052713 (2011) http://dx.doi.org/10.1103/PhysRevA.83.052713

  • [19] L.F. Errea et al., Phys. Scr. T62, 33 (1996) http://dx.doi.org/10.1088/0031-8949/1996/T62/005

  • [20] C. von Sonntag, The Chemical Basis for radiation Biology (Taylor and Francis, London, 1987)

  • [21] C. Illescas, L.F. Errea, L. Méndez, B. Pons, I. Rabadán, A. Riera, Phys. Rev. A 83, 052704 (2011) http://dx.doi.org/10.1103/PhysRevA.83.052704

  • [22] J. de Vries, R. Hoekstra, R. Morgenstern, T. Schlathölter, J. Phys. B 35, 4373 (2002) http://dx.doi.org/10.1088/0953-4075/35/21/304

  • [23] M.C. Bacchus-Montabonel, M. Łabuda, Y.S. Tergiman, J.E. Sienkiewicz, Phys. Rev. A 72, 052706 (2005) http://dx.doi.org/10.1103/PhysRevA.72.052706

  • [24] A. Chenel, E. Mangaud, Y. Justum, D. Talbi, M.C. Bacchus-Montabonel, M. Desouter-Lecomte, J. Phys. B 43, 245701 (2010) http://dx.doi.org/10.1088/0953-4075/43/24/245701

  • [25] R. Linguerri, M. Hochlaf, M.C. Bacchus-Montabonel, M. Desouter-Lecomte, Phys. Chem Chem. Phys 15, 824 (2013) http://dx.doi.org/10.1039/c2cp43576d

  • [26] M.C. Bacchus-Montabonel, Y.S. Tergiman, Phys. Rev. A 74, 054702 (2006) http://dx.doi.org/10.1103/PhysRevA.74.054702

  • [27] M.C. Bacchus-Montabonel, Y.S. Tergiman, Chem. Phys. Lett. 503, 45 (2011) http://dx.doi.org/10.1016/j.cplett.2011.01.013

  • [28] M.C. Bacchus-Montabonel, Y.S. Tergiman, Phys. Chem Chem. Phys 13, 9761 (2011) http://dx.doi.org/10.1039/c1cp20503j

  • [29] M.C. Bacchus-Montabonel, Y.S. Tergiman, D. Talbi, Phys. Rev. A 79, 012710 (2009) http://dx.doi.org/10.1103/PhysRevA.79.012710

  • [30] M.C. Bacchus-Montabonel, J. Phys. Conf. Series 373, 012002 (2012) http://dx.doi.org/10.1088/1742-6596/373/1/012002

  • [31] S. Zamenhof, R. DeGiovanni, S. Greer, Nature (London) 181, 827 (1959) http://dx.doi.org/10.1038/181827a0

  • [32] P. McLaughlin et al., Int. J. Radiat. Oncol., Biol. Phys. 26, 637 (1993) http://dx.doi.org/10.1016/0360-3016(93)90281-Y

OPEN ACCESS

Journal + Issues

Search