Wong’s equations in Yang-Mills theory

Sergey Storchak 1
  • 1 Institute for High Energy Physics, Protvino, Moscow Region, 142284, Russia

Abstract

Wong’s equations for the finite-dimensional dynamical system representing the motion of a scalar particle on a compact Riemannian manifold with a given free isometric smooth action of a compact semi-simple Lie group are derived. The equations obtained are written in terms of dependent coordinates which are typically used in an implicit description of the local dynamics given on the orbit space of the principal fiber bundle. Using these equations, we obtain Wong’s equations in a pure Yang-Mills gauge theory with Coulomb gauge fixing. This result is based on the existing analogy between the reduction procedures performed in a finite-dimensional dynamical system and the reduction procedure in Yang-Mills gauge fields.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] S. K. Wong, Il Nuovo Cimento A 65, 689 (1970) http://dx.doi.org/10.1007/BF02892134

  • [2] L. S. Brown, W. I. Weisberger, Nucl. Phys. B 157, 285 (1979) http://dx.doi.org/10.1016/0550-3213(79)90508-X

  • [3] B. P. Kosyakov, Phys. Rev. D 57, 5032 (1998) http://dx.doi.org/10.1103/PhysRevD.57.5032

  • [4] J. Jalilian-Marian, S. Jeon, R. Venugopalan, Phys. Rev. D 63, 036004 (2001) http://dx.doi.org/10.1103/PhysRevD.63.036004

  • [5] J. F. Dawson, B. Mihaila, F. Cooper, Phys. Rev. D 81, 054026 (2010) http://dx.doi.org/10.1103/PhysRevD.81.054026

  • [6] Z. Haba, Mod. Phys. Lett. A28, 1350091 (2013) http://dx.doi.org/10.1142/S0217732313500910

  • [7] R. Kerner, Ann. Inst. H. Poincaré 9, 143 (1968)

  • [8] R. Montgomery, Lett. Math. Phys. 8, 59 (1984) http://dx.doi.org/10.1007/BF00420042

  • [9] R. Montgomery, Ph. D. thesis, University of California, (Berkeley, USA, 1986)

  • [10] C. Duval, P. Horvathy, Ann. Phys. (N.Y.) 142, 10 (1982) http://dx.doi.org/10.1016/0003-4916(82)90226-3

  • [11] J. E. Marsden, Lecture on Mechanics, London Math. Soc. Lect. Notes Series 174 (Cambridge University Press, Cambridge, 1992) http://dx.doi.org/10.1017/CBO9780511624001

  • [12] J. E. Marsden, T. S. Ratiu, J. Scheurle, J. Math. Phys. 41, 3379 (2000) http://dx.doi.org/10.1063/1.533317

  • [13] S. N. Storchak, J. Phys. A: Math. Gen. 34, 9329 (2001) http://dx.doi.org/10.1088/0305-4470/34/43/315

  • [14] S. N. Storchak, Bogolubov transformation in path integral on manifold with a group action (IHEP Preprint 98-1, Protvino, 1998)

  • [15] S. N. Storchak, Phys. Atom. Nucl. 64, 2199 (2001) http://dx.doi.org/10.1134/1.1432926

  • [16] S. N. Storchak, J. Phys. A: Math. Gen. 37, 7019 (2004) http://dx.doi.org/10.1088/0305-4470/37/27/011

  • [17] S. N. Storchak, J. Geom. Phys. 59, 1155 (2009) http://dx.doi.org/10.1016/j.geomphys.2009.05.001

  • [18] Y. M. Cho, D. S. Kimm, J. Math. Phys. 30, 1571 (1989)

  • [19] Y. M. Cho, Phys. Rev. D 35, 2628 (1987) http://dx.doi.org/10.1103/PhysRevD.35.2628

  • [20] R. G. Littlejohn, M. Reinsch, Rev. Mod. Phys. 69, 213 (1997) http://dx.doi.org/10.1103/RevModPhys.69.213

  • [21] A. Z. Jadczyk, Class. Quant. Grav. 1, 517 (1984) http://dx.doi.org/10.1088/0264-9381/1/5/006

  • [22] O. Babelon, C. M. Viallet, Phys. Lett. B 85, 246 (1979) http://dx.doi.org/10.1016/0370-2693(79)90589-6

  • [23] O. Babelon, C. M. Viallet, Commun. Math. Phys. 81, 515 (1981) http://dx.doi.org/10.1007/BF01208272

  • [24] P. K. Mitter, C. M. Viallet, Commun. Math. Phys. 79, 43 (1981) http://dx.doi.org/10.1007/BF01209307

  • [25] I. M. Singer, Phisica Scripta 24, 817 (1981) http://dx.doi.org/10.1088/0031-8949/24/5/002

  • [26] I. M. Singer, Commun. Math. Phys. 60, 7 (1978) http://dx.doi.org/10.1007/BF01609471

  • [27] M. S. Narasimhan, T. R. Ramadas, Commun. Math. Phys. 67, 121 (1979) http://dx.doi.org/10.1007/BF01221361

  • [28] D. Groisser, T. H. Parker, J. Diff. Geom. 29, 499 (1989)

  • [29] Yu. P. Soloviev, Geometrical structures on a manifold of interacting gauge fields, In: Global analysis and mathematical physics (Voronezh, Voronezh State University, 1987) 110 (in Russian).

  • [30] G. C. Rossi, M. Testa, Nucl. Phys. B 163, 109 (1980) http://dx.doi.org/10.1016/0550-3213(80)90393-4

  • [31] G. C. Rossi, M. Testa, B 176, 477 (1980)

  • [32] S. N. Storchak, arXiv: 0711.2910 [hep-th]

  • [33] G. Kunstatter, Class. Quant. Grav. 9, 1466 (1992) http://dx.doi.org/10.1088/0264-9381/9/6/005

  • [34] J. Harnad, J. P. Pareé, Class. Quant. Grav. 8, 1427 (1991) http://dx.doi.org/10.1088/0264-9381/8/8/009

  • [35] D. Lukman, N. S. Mankoč Borštink and H. B. Nielsen, New J. Phys. 13, 103027 (2011) http://dx.doi.org/10.1088/1367-2630/13/10/103027

  • [36] T. Mestdag, A Lie algebroid approach to Lagrangian systems with symmetry, In: J. Bures et al. (Eds.), Differential Geometry and its Applications, Proc. Conf. (Prague, Czech Republic, 2005) 523–535.

  • [37] T. Guhr, S. Keppeler, Annals Phys. 322, 287 (2007) http://dx.doi.org/10.1016/j.aop.2006.09.010

  • [38] S. Fabi, G. S. Karatheodoris, arXiv:1104.3970.

  • [39] S. Fabi, B. Harms, S. Hou, arXiv:1302.0795.

OPEN ACCESS

Journal + Issues

Search