One-dimensional Bose-Hubbard model with pure three-body interactions

Tomasz Sowiński
  • 1 Institute of Physics of the Polish Academy of Sciences, Al. Lotników 32/46, 00-668, Warsaw, Poland
  • 2 Center for Theoretical Physics of the Polish Academy of Sciences, Al. Lotników 32/46, 00-668, Warsaw, Poland

Abstract

The extended Bose-Hubbard model with pure three-body local interactions is studied using the Density Matrix Renormalization Group approach. The shapes of the first two insulating lobes are discussed, and the values of the critical tunneling for which the system undergoes the quantum phase transition from insulating to superfluid phase are predicted. It is shown that stability of insulating phases, in contrast to the standard Bose-Hubbard model, is enhanced for larger fillings. It is also shown that, on the tip of the boundary of the insulating phase, the model under consideration belongs to the Berenzinskii-Kosterlitz-Thouless universality class.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] M. Lewenstein, A. Sanpera, V. Ahufinger, B. Damski, A. Sen(De), U. Sen, Adv. Phys. 56, 243 (2007) http://dx.doi.org/10.1080/00018730701223200

  • [2] I. Bloch, W. Zwerger, Rev. Mod. Phys. 80, 885 (2008) http://dx.doi.org/10.1103/RevModPhys.80.885

  • [3] M. Lewenstein, A. Sanpera, V. Ahufinger, Ultracold Atoms in Optical Lattices — Simulating quantum many-body systems (Oxford University Press, Oxford, 2012) http://dx.doi.org/10.1093/acprof:oso/9780199573127.001.0001

  • [4] M. P. A. Fisher, P. B. Weichman, G. Grinstein, D. S. Fisher, Phys. Rev. B 40, 546 (1989) http://dx.doi.org/10.1103/PhysRevB.40.546

  • [5] D. Jaksch, C. Bruder, J. I. Cirac, C. W. Gardiner, P. Zoller, Phys. Rev. Lett. 81, 3108 (1998) http://dx.doi.org/10.1103/PhysRevLett.81.3108

  • [6] M. Greiner, O. Mandel, T. Esslinger, T. Hänsch, I. Bloch, Nature 415, 39 (2002) http://dx.doi.org/10.1038/415039a

  • [7] S. Will, T. Best, U. Schneider, L. Hackermüller, D.-S. Lühmann, I. Bloch, Nature 465, 197 (2010) http://dx.doi.org/10.1038/nature09036

  • [8] T. Sowiński, Phys. Rev. A 85, 065601 (2012) http://dx.doi.org/10.1103/PhysRevA.85.065601

  • [9] B.-l. Chen, X.-b. Huang, S.-p. Kou, Y. Zhang, Phys. Rev. A 78, 043603 (2008) http://dx.doi.org/10.1103/PhysRevA.78.043603

  • [10] K. Zhou, Z. Liang, Z. Zhang, Phys. Rev. A 82, 013634 (2010) http://dx.doi.org/10.1103/PhysRevA.82.013634

  • [11] A. Safavi-Naini, J. von Stecher, B. Capogrosso-Sansone, S. T. Rittenhouse, Phys. Rev. Lett. 109, 135302 (2012) http://dx.doi.org/10.1103/PhysRevLett.109.135302

  • [12] J. Silva-Valencia A. M. C. Souza, Phys. Rev. A 84, 065601 (2011) http://dx.doi.org/10.1103/PhysRevA.84.065601

  • [13] H. Al-Jibbouri, I. Vidanović, A. Balaž, A. Pelster, J. Phys. B 46, 065303 (2013) http://dx.doi.org/10.1088/0953-4075/46/6/065303

  • [14] J. Silva-Valencia A. Souza, Eur. Phys. J. B 85, 161 (2012) http://dx.doi.org/10.1140/epjb/e2012-20966-8

  • [15] T. Sowiński, R.W. Chhajlany, O. Dutta, L. Tagliacozzo, M. Lewenstein, arXiv:1304.4835 (2013)

  • [16] M. Singh, A. Dhar, T. Mishra, R. V. Pai, B. P. Das, Phys. Rev. A 85, 051604 (2012) http://dx.doi.org/10.1103/PhysRevA.85.051604

  • [17] F. K. Abdullaev M. Salerno, Phys. Rev. A 72, 033617 (2005) http://dx.doi.org/10.1103/PhysRevA.72.033617

  • [18] T. Sowiński, R.W. Chhajlany, Phys. Scr. T 160, 014038 (2014) http://dx.doi.org/10.1088/0031-8949/2014/T160/014038

  • [19] L. Mazza, M. Rizzi, M. Lewenstein, J. I. Cirac, Phys. Rev. A 82, 043629 (2010) http://dx.doi.org/10.1103/PhysRevA.82.043629

  • [20] A. J. Daley, J. M. Taylor, S. Diehl, M. Baranov, P. Zoller, Phys. Rev. Lett. 102, 040402 (2009) http://dx.doi.org/10.1103/PhysRevLett.102.040402

  • [21] H. P. Büchler, A. Micheli, P. Zoller, Nature Phys. 3, 726 (2007) http://dx.doi.org/10.1038/nphys678

  • [22] K. P. Schmidt, J. Dorier, A. M. Läuchli, Phys. Rev. Lett. 101, 150405 (2008) http://dx.doi.org/10.1103/PhysRevLett.101.150405

  • [23] B. Capogrosso-Sansone, S. Wessel, H. P. Büchler, P. Zoller, G. Pupillo, Phys. Rev. B 79, 020503 (2009) http://dx.doi.org/10.1103/PhysRevB.79.020503

  • [24] V. F. Elesin, V. Kashurnikov, L. A. Openov, JETP Lett. 60, 174 (1994)

  • [25] S. Ejima, F. Lange, H. Fehske, F. Gebhard, K. zu Münster, Phys. Rev. A 88, 063625 (2013) http://dx.doi.org/10.1103/PhysRevA.88.063625

  • [26] V. Berenzinskii, Sov. Phys. JETP 34, 610 (1972)

  • [27] J. M. Kosterlitz D. J. Thouless, J. Phys. C 6, 1181 (1973) http://dx.doi.org/10.1088/0022-3719/6/7/010

  • [28] P. Calabrese J. Cardy, J. Stat. Mech. Theor. Exp. 2004, P06002 (2004)

  • [29] N. Laflorencie, E. S. Sørensen, M.-S. Chang, I. Affleck, Phys. Rev. Lett. 96, 100603 (2006) http://dx.doi.org/10.1103/PhysRevLett.96.100603

  • [30] M. Cazalilla, R. Citro, T. Giamarchi, Rev. Mod. Phys. 83, 1405 (2011) http://dx.doi.org/10.1103/RevModPhys.83.1405

  • [31] S. Ejima, H. Fehske, F. Gebhard, K. zu Münster, M. Knap, E. Arrigoni, W. von der Linden, Phys. Rev. A 85, 053644 (2012) http://dx.doi.org/10.1103/PhysRevA.85.053644

OPEN ACCESS

Journal + Issues

Open Physics (former Central European Journal of Physics) is a peer-reviewed Open Access journal, devoted to the publication of fundamental research results in all fields of physics.

Search