Detecting extra dimensions by Hydrogen-like atoms

Zhou Wan-Ping 1 , Zhou Peng 1 , and Qiao Hao-Xue 1
  • 1 School of Physics and Technology, Wuhan University, HB 27 Wuhan, China
  • 2 Engineering and Technology College, Hubei University of Technology, HB 27 Wuhan, China

Abstract

We reconsider the idea in spectroscopy of detecting extra dimensions by regarding the nucleus as a homogeneous sphere. In our results, it turns out that the gravitational potential inside the nucleus is much stronger than the potential induced by a particle in the same regime in ref. [16], and thus a more significant correction of the ground state energy of hydrogen-like atoms is obtained, which can be used to determine the existence of ADD’s extra dimensions. In order to get a larger order of magnitude for the correction, it is better to apply our theory to high-Z atoms or muonic atoms, where the volume of the nucleus can’t be ignored and the relativistic effect is important. Our work is based on the Dirac equation in aweak gravity field, and the result is more precise.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] J. Polchinski, String Theory, Vol. I.II. (Cambridge University Press, Cambridge, England, 1998)

  • [2] C. Rovelli, Quantum Gravity (Cambridge University Press, Cambridge, England, 2004)

  • [3] M.K. Parikh, Gen. Rel. Grav. 36, 2419 (2004)

  • [4] S.W. Hawking, Commun. Math. Phys. 43, 199 (1975)

  • [5] C. Corda, Eur. Phys. J. C 73, 2665 (2013)

  • [6] C. Corda, Int. Journ. Mod. Phys. D 21, 1242023 (2012)

  • [7] N.A. Hamed, S. Dimopoulos, G. Dvali, Phys. Lett. B 429, 263 (1998)

  • [8] N.A. Hamed, S. Dimopoulos, G. Dvali, Phys. Rev. D 59, 086004 (1999)

  • [9] N.A. Hamed, S. Dimopoulos, G. Dvali, J.M. Russell, Phys. Rev. D 65, 024032 (2002)

  • [10] D.J. Kapner et al., Phys. Rev. Lett. 98, 021101 (2007)

  • [11] V.P. Goncalves, W.K. Sauter, M. Thiel, Phys. Rev. D 89, 076003 (2014)

  • [12] H. Sun, arXiv:1406.3897

  • [13] G.F. Giudice, R. Rattazzi, J.D. Wells, Nucl. Phys. B 544, 3 (1999)

  • [14] S. Dimopoulos, G. Landsberg, Phys. Rev. Lett. 87, 161602 (2001)

  • [15] C. Hanhart, J.A. Pons, D.R. Phillips, S. Reddy, Phys. Lett. B. 509, 1 (2001)

  • [16] F. Luo, H.Y. Liu, Chin. Phys. Lett. 23, 2903 (2006)

  • [17] F. Luo, H.Y. Liu, Int. J. Theor. Phys. 46, 606 (2007)

  • [18] Y.X. Liu, X.H. Zhang, Y.S. Duan, Mod. Phys. Lett. A 23, 1853 (2008)

  • [19] A. Zee, Quantum field theory in a nutshell (Princeton University Press, Princeton, 2003)

  • [20] H.A. Bethe, E.E. Salpeter, Quantum mechanics of one- and twoelectron atoms (Plenum, New York, 1977)

OPEN ACCESS

Journal + Issues

Search