Specific solutions of the generalized Korteweg-de Vries equation with possible physical applications

Paul Bracken 1
  • 1 Department of Mathematics, University of Texas, 1201 W. University Dr., 78541-2999, Edinburg, USA


Solutions for a type of generalized Korteweg-de Vries equation which should have physical impact will be determined here. These types of solutions should have applications in the study of intrinsic localized modes optical waveguide arrays and fluid dynamics. It is shown that trigonometric and hyperbolic solutions can be obtained by matching powers and coefficients of the independent terms in the equation after the assumed solution has been substituted. As well, solutions to the equation in terms of more complicated Jacobe elliptic functions are determined.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] S. Dusuel, P. Michaux and M. Remoissenet: “From kinks to compactonlike kinks”,Phys. Rev. E,Vol. 57, (1998),pp. 2320–2326. http://dx.doi.org/10.1103/PhysRevE.57.2320

  • [2] P.T. Dinda and M. Remoissenet: “Breather compactons in nonlinear Klein-Gordon systems”,Phys. Rev. E,Vol. 60, (1999),pp. 6218–6121. http://dx.doi.org/10.1103/PhysRevE.60.6218

  • [3] P. Rosenau and J.M. Hyman: “Compactons: Solitons with Finite Wavelength”,Phys. Rev. Lett,Vol. 70 (1993),pp. 564–567. http://dx.doi.org/10.1103/PhysRevLett.70.564

  • [4] P. Bracken: “Some methods for generating solutions to the Korteweg-de Vries equation”,Physica A, Vol. 335, (2004), pp. 70–78. http://dx.doi.org/10.1016/j.physa.2003.11.026

  • [5] P. Bracken: “Symmetry Properties of the Generalized Korteweg-de Vries Equation And Some Explicit Solutions”,Texas preprint

  • [6] A.M. Wazwaz: “Exact special solutions with solitary patterns for the nonlinear dispersiveK(m, n) equations”,Chaos, Solitons and Fractals,Vol. 13, (2001),pp. 161–170. http://dx.doi.org/10.1016/S0960-0779(00)00248-4

  • [7] A.M. Wazwaz: “New solitary-wave special solutions with compact support for the nonlinear dispersiveK(m, n) equations”,Chaos, Solitons and Fractals,Vol. 13, (2002),pp. 321–330. http://dx.doi.org/10.1016/S0960-0779(00)00249-6

  • [8] C. Yan: “A simple transformation for nonlinear waves”,Physics Letters A,Vol. 224, (1996,pp. 77–84. http://dx.doi.org/10.1016/S0375-9601(96)00770-0

  • [9] Z. Fu, S. Liu and S. Liu: “New transformations and new approach to find exact solutions to nonlinear equations”,Physics Letters A,Vol. 299, (2002),pp. 507–512. http://dx.doi.org/10.1016/S0375-9601(02)00737-5

  • [10] J. Dalibard, J.M. Raimond and J. Zinn-Justin:Fundamental Systems in Quantum Optics, Les Houches, Session LIII, North-Holland, 1992.

  • [11] A. Ludu and J.P. Draayer: “Patterns on liquid surfaces: cnoidal waves, compactons and scaling”,Physica D,Vol. 123, (1998),pp. 82–91. http://dx.doi.org/10.1016/S0167-2789(98)00113-4

  • [12] D.K. Campbell, S. Flach and Y. Kivshar: “Localizing Energy Through Nonlinearity and Discreteness”,Physics Today,Vol. 57, (2004),pp. 43–49.


Journal + Issues