Band structure and optical properties of antimony-sulfobromide: density functional calculation

Harun Akkus 1 , Amirullah Mamedov 2 , Ali Kazempour 3 ,  and Hadi Akbarzadeh 3
  • 1 Department of Physics, Yuzuncu Yil University, 65080, Van, Turkey
  • 2 Department of Physics, Cukurova University, 01330, Adana, Turkey
  • 3 Department of Physics, Isfahan University of Technology, Isfahan, 84156, Iran

Abstract

The electronic structure, linear, and non-linear optical properties of ferroelectric-semiconductor SbSBr are investigated in the non-polar (paraelectric) and polar (ferroelectric) phase, using the density functional methods in the generalized gradient approximation. The electronic band structure obtained shows that SbSBr has an indirect forbidden gap of 2.16 and 2.21 eV in the paraelectric and ferroelectric phase, respectively. The linear photon-energy dependent dielectric functions and some optical functions, such as absorption and extinction coefficients, refractive index, energy-loss function, reflectivity, and optical conductivity in both phases and photon-energy dependent second-order susceptibilities in the ferroelectric phase are calculated. Moreover, some important optical parameters, such as the effective number of valence electrons and the effective optical dielectric constant, are calculated in both phases.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] T. Inushima, J. Korean Phys. Soc. 32, S70 (1998)

  • [2] R. Nitsche, W.J. Merz, J. Phys. Chem. Solids 13, 154 (1960) http://dx.doi.org/10.1016/0022-3697(60)90136-0

  • [3] E. Dönges, Z. Anorg. Allg. Chem. 263, 112 (1950) http://dx.doi.org/10.1002/zaac.19502630113

  • [4] G.D. Christofferson, J.D. McCullough, Acta Cryst. 12, 14 (1959) http://dx.doi.org/10.1107/S0365110X59000044

  • [5] T. Inushima, K. Uchinokura, Jpn. J. Appl. Phys. Suppl. 24–2, 600 (1985)

  • [6] J.F. Alward, C.Y. Fong, M. El-Batanouny, F. Wooten, Solid State Commun. 25, 307 (1978) http://dx.doi.org/10.1016/0038-1098(78)90964-X

  • [7] T.A. Pikka, V.M. Fridkin, Fizika Tverdego Tela 10, 2668 (1968)

  • [8] T.A. Pikka, V.M. Fridkin, Fizika Tverdego Tela 10, 378 (1969)

  • [9] K. Ohi, J. Phys. Soc. Jpn. 25, 1369 (1968) http://dx.doi.org/10.1143/JPSJ.25.1369

  • [10] M. Fuchs, M. Sceffler, Comput. Phys. Commun. 119, 67 (1999) http://dx.doi.org/10.1016/S0010-4655(98)00201-X

  • [11] N. Troullier, J.L. Martins, Phys. Rev. B 43, 1993 (1991) http://dx.doi.org/10.1103/PhysRevB.43.1993

  • [12] J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996) http://dx.doi.org/10.1103/PhysRevLett.77.3865

  • [13] W. Kohn, L.J. Sham, Phys. Rev. 140, A1133 (1965) http://dx.doi.org/10.1103/PhysRev.140.A1133

  • [14] M.C. Payne, M.P. Teter, D.C. Allan, T.A. Arias, J.D. Joannopoulos, Rev. Mod. Phys. 64, 1045 (1992) http://dx.doi.org/10.1103/RevModPhys.64.1045

  • [15] X. Gonze, et al., Computational Materials Science 25, 478 (2002) http://dx.doi.org/10.1016/S0927-0256(02)00325-7

  • [16] W.G. Aulbur, L. Jonsson, J.W. Wilkins, Solid State Phys. 54, 1 (2000) http://dx.doi.org/10.1016/S0081-1947(08)60248-9

  • [17] H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976) http://dx.doi.org/10.1103/PhysRevB.13.5188

  • [18] J.L.P. Hughes, J.E. Sipe, Phys. Rev. B 53, 10751 (1996)

  • [19] S. Sharma, C. Ambrosch-Draxl, Physica Scripta T109, 128 (2004) http://dx.doi.org/10.1238/Physica.Topical.109a00128

  • [20] H.R. Philipp, H. Ehrenreich, Phys. Rev. 129, 1550 (1963) http://dx.doi.org/10.1103/PhysRev.129.1550

  • [21] L. Marton, Rev. Mod. Phys. 28, 172 (1956) http://dx.doi.org/10.1103/RevModPhys.28.172

OPEN ACCESS

Journal + Issues

Open Physics (former Central European Journal of Physics) is a peer-reviewed Open Access journal, devoted to the publication of fundamental research results in all fields of physics.

Search