The Einstein field equations for the Friedmann universe reduce to a system of three first-order equations for the space-like components and a constraint from the temporal component. We analyse the system from the viewpoints of symmetry and singularity analyses. The solutions of particular relevance to Cosmology are highlighted.
[1] L.D. Landau, E.M. Lifshitz, The Classical Theory of Fields (Pergamon Press, Oxford, 1987)
[2] A. Linde, Particle Physics and Inflationary Cosmology (Harwood Academic Publishers, Amsterdam, 1990)
[3] M.P. Ryan Jr, L.C. Shepley, Homogeneous Relativistic Cosmologies (Princeton University Press, Princeton, New Jersey, 1975)
[4] S. Cotsakis, J.D. Barrow, The dominant balance at cosmological singularities Proceedings of the Greek Relativity meeting NEB12 (2006)
[5] M.J. Ablowitz, A. Ramani, H. Segur, J. Mat. Phys. 21 715 (1980) http://dx.doi.org/10.1063/1.524491
[6] A. Ramani, B. Grammaticos, T. Bountis, Phys. Rep. 180, 159 (1989) http://dx.doi.org/10.1016/0370-1573(89)90024-0
[7] M.C. Nucci, J. Mat. Phys. 37, 1772 (1996) http://dx.doi.org/10.1063/1.531496
[8] K. Andriopoulos, P.G.L. Leach, G.P. Flessas, J. Math. Anal. Appl. 262, 256 (2001) http://dx.doi.org/10.1006/jmaa.2001.7570
[9] K. Andriopoulos, Complete symmetry groups and Lie remarkability, In: Symmetry and Perturbation Theory — SPT 2007 G. Gaeta, R. Vitolo, S. Walcher Eds. (World Scientific, Singapore, 2007) 237
[10] P.G.L. Leach, S. Cotsakis, J. Miritzis, Gravitation & Cosmology 7, 311 (2001)
[11] J. Miritzis, P.G.L. Leach, Gravitation & Cosmology 6, 282 (2000)