Evolution of the polarization of electromagnetic waves in weakly anisotropic inhomogeneous media — a comparison of quasi-isotropic approximations of the geometrical optics method and the Stokes vector formalism

Yury Kravtsov and Bohdan Bieg 1
  • 1 Department of Physics, Maritime University Szczecin, Wały Chrobrego 1-2, 70-500, Szczecin, Poland
  • 2 Space Research Institute, Russ. Acad. Sci., Profsoyuznaya 82/34, 117997, Moscow, Russia


The main methods describing polarization of electromagnetic waves in weakly anisotropic inhomogeneous media are reviewed: the quasi-isotropic approximation (QIA) of geometrical optics method that deals with coupled equations for electromagnetic field components, and the Stokes vector formalism (SVF), dealing with Stokes vector components, which are quadratic in electromagnetic field intensity. The equation for the Stokes vector evolution is shown to be derived directly from QIA, whereas the inverse cannot be true. Derivation of SVF from QIA establishes a deep unity of these two approaches, which happen to be equivalent up to total phase. It is pointed out that in contrast to QIA, the Stokes vector cannot be applied for a polarization analysis of the superposition of coherent electromagnetic beams. Additionally, the ability of QIA to describe a normal modes conversion in inhomogeneous media is emphasized.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] K.G. Budden, Radio Waves in the Ionosphere (Cambridge Univ. Press, Cambridge, UK, 1961)

  • [2] V.I. Ginzburg, Propagation of Electromagnetic waves in Plasma (Gordon and Breach, New York, 1970)

  • [3] Yu.A. Kravtsov, Sov. Phys.-Doklady 13, 1125 (1969)

  • [4] Yu.A. Kravtsov, O.N. Naida, A.A. Fuki, Physics-Uspekhi 39, 129 (1996) http://dx.doi.org/10.1070/PU1996v039n02ABEH000131

  • [5] A.A. Fuki, Yu.A. Kravtsov, O.N. Naida, Geometrical Optics of Weakly Anisotropic Media (Gordon & Breach, Lond., N.Y., 1997)

  • [6] Yu.A. Kravtsov, Yu.I. Orlov, Geometrical optics of inhomogeneous media (Springer Verlag, Berlin, Heidelberg, 1990)

  • [7] Yu.A. Kravtsov, Geometrical Optics in Engineering Physics (Alpha Science, London, 2005)

  • [8] R.M.A. Azzam, J. Opt. Soc. Am. 68, 1756 (1978) http://dx.doi.org/10.1364/JOSA.68.001756

  • [9] S.E. Segre, Plasma Phys. Control. F 41, R57 (1999) http://dx.doi.org/10.1088/0741-3335/41/2/001

  • [10] S.E. Segre, J. Opt. Soc. Am. A 18, 2601 (2001) http://dx.doi.org/10.1364/JOSAA.18.002601

  • [11] S.E. Segre, J. Phys. D 36, 2806 (2003) http://dx.doi.org/10.1088/0022-3727/36/22/006

  • [12] S.E. Segre, V. Zanza, Plasma Phys. Control. F 48, 339 (2006) http://dx.doi.org/10.1088/0741-3335/48/3/001

  • [13] S.E. Segre, Preprint RT/ERG/FUS/2001/13, 2001, ENEA, Frascati, Italy (2001)

  • [14] K.Yu. Bliokh, D.Yu. Frolov, Yu.A. Kravtsov, Phys. Rev. A 75, 053821 (2007) http://dx.doi.org/10.1103/PhysRevA.75.053821

  • [15] Yu.A. Kravtsov, B. Bieg, K.Yu. Bliokh, J. Opt. Soc. Am. A 24, 3388 (2007) http://dx.doi.org/10.1364/JOSAA.24.003388

  • [16] M.M. Popov, Vestnik Leningradskogo Universiteta (Bulletin of the Leningrad University) 22, 44 (1969)

  • [17] V.M. Babich, V.S. Buldyrev, Short-Wavelength Diffraction Theory: Asymptotic Methods (Springer Verlag, Berlin, 1990)

  • [18] V. Éervený, Seismic Ray Theory (Cambridge University Press, Cambridge, UK, 2001)

  • [19] Yu.A. Kravtsov, O.N. Naida, Sov. Phys-JETP 44, 122 (1976)

  • [20] M. Born, E. Wolf, Principles of Optics, 5th edition (Pergamon, Oxford 1975)

  • [21] Z.H. Czyz, B. Bieg, Yu.A. Kravtsov, Phys. Let. A 368, 101 (2007) http://dx.doi.org/10.1016/j.physleta.2007.03.055

  • [22] Yu.A. Kravtsov, P. Berczynski, B. Bieg, K.Yu. Bliokh, Z.H. Czyz, In: PIERS2007, CD-ROM, ISSN: 1559-9450, Progress in Electromagnetics Research Symposium PIERS-2007, 27–30 August 2007, Prague, Czech Republic


Journal + Issues