Nanostructuring of diamond films using self-assembled nanoparticles

Oleg Babchenko 1 , Alexander Kromka 1 , Karel Hruska 1 , Miroslav Michalka 2 , Jiri Potmesil 1 , and Milan Vanecek 1
  • 1 Institute of Physics of the ASCR, v.v.i., CZ-16253, Prague 6, Czech Republic
  • 2 International Laser Centre, SK-812 19, Bratislava, Slovak Republic

Abstract

We report the use of gold, nickel and diamond nanoparticles as a masking material for realization of diamond nano-structures by applying the dry plasma etching process. Applying low power plasma (100 W) in a gas mixture of CF4/O2 for 5 minutes results in a formation of three different types of diamond nanostructures, depending on the mask type material and particle size. Using of the Ni mask results in realization of diamond nano-rods, applying of the Au mask brings cauliflower-like structures, and using the diamond powder allows the production of irregular nano-structures. The main advance of the presented etching procedure is use of a self-assembly strategy where no lithographic steps are implemented.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] A. Vescan, W. Ebert, T. H. Borst, E. Kohn, Diam. Relat. Mater. 5, 747 (1996) http://dx.doi.org/10.1016/0925-9635(95)00500-5

  • [2] E. Kohn, P. Gluche, M. Adamschik, Diam. Relat. Mater. 8, 934 (1999) http://dx.doi.org/10.1016/S0925-9635(98)00294-5

  • [3] E. Kohnetal, J. Phys. DAppl. Phys. 34, 77 (2001)

  • [4] D. S. Hwang, T. Saito, N. Fujimori, Diam. Relat. Mater. 13, 2207 (2004) http://dx.doi.org/10.1016/j.diamond.2004.07.020

  • [5] N. Yang, H. Uetsuka, E. Osawa, C. E. Nebel, Angew. Chem. Int. Edit. 47, 5183 (2008) http://dx.doi.org/10.1002/anie.200801706

  • [6] I. Belloetal, Thin Solid Films 368, 222 (2000) http://dx.doi.org/10.1016/S0040-6090(00)00769-0

  • [7] D. T. Tran, T. A. Grotjohn, D. K. Reinhard, J. Asmussen, Diam. Relat. Mater. 17, 717 (2008) http://dx.doi.org/10.1016/j.diamond.2007.12.067

  • [8] P. W. Leech, G. K. Reeves, A. Holland, J. Mater. Sci. 36, 3453 (2001) http://dx.doi.org/10.1023/A:1017964129419

  • [9] R. Otterbach, U. Hilleringmann, Diam. Relat. Mater. 11, 841 (2002) http://dx.doi.org/10.1016/S0925-9635(01)00703-8

  • [10] Y. Ando, Y. Nishibayashi, K. Kobashi, T. Hirao, K. Oura, Diam. Relat. Mater. 11, 824 (2002) http://dx.doi.org/10.1016/S0925-9635(01)00617-3

  • [11] O. A. Shenderova, C. W. Padgett, Z. Hu, D. W. Brenner, J. Vac. Sci. Technol. B 23(6), 2457 (2005) http://dx.doi.org/10.1116/1.2122907

  • [12] R. J. Hamers, Nature 454, 708 (2008) http://dx.doi.org/10.1038/454708a

  • [13] H. Uetsuka, T. Yamada, S. Shikata, Diam. Relat. Mater. 17, 728 (2008) http://dx.doi.org/10.1016/j.diamond.2007.12.071

  • [14] M. Kalbacovaetal, Phys. Status Solidi B 245, 2124 (2008) http://dx.doi.org/10.1002/pssb.200879579

  • [15] G. B. Kang, S. -I. Kim, Y. T. Kim, J. H. Park, Curr. Appl. Phys. 9, S82 (2009) http://dx.doi.org/10.1016/j.cap.2008.08.012

OPEN ACCESS

Journal + Issues

Search