Conditional approach to thermo-superstatistics

Sumiyoshi Abe
  • 1 Department of Physical Engineering, Mie University, Mie, 514-8507, Japan
  • 2 Institut Supérieur des Matériaux et Mécaniques Avancés, 44 F. A. Bartholdi, 72000, Le Mans, France
  • 3 Inspire Institute Inc., McLean, Virginia, 22101, USA

Abstract

A conditional approach is developed for establishing a generalized thermodynamic-like formalism for superstatistical systems. In this framework, the existence of two largely-separated time scales is explicitly taken into account. A generalization of Einstein’s relation for fluctuations is derived based on the restricted conditional maximum-entropy method.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] G. Wilk, Z. Wlodarczyk, Phys. Rev. Lett. 84, 2770 (2000) http://dx.doi.org/10.1103/PhysRevLett.84.2770

  • [2] A. G. Bashkirov, A. D. Sukhanov, J. Exp. Theor. Phys. 95, 440 (2002) http://dx.doi.org/10.1134/1.1513816

  • [3] C. Beck, E. G. D. Cohen, Physica A 322, 267 (2003) http://dx.doi.org/10.1016/S0378-4371(03)00019-0

  • [4] A. Einstein, Ann. Phys. 33, 1275 (1910) http://dx.doi.org/10.1002/andp.19103381612

  • [5] L. D. Landau, E. M. Lifshitz, Statistical Physics, 3rd edition (Pergamon Press, Oxford, 1980)

  • [6] G. E. Crooks, Phys. Rev. E 75, 041119 (2007) http://dx.doi.org/10.1103/PhysRevE.75.041119

  • [7] A. I. Khinchin, Mathematical Foundations of Information Theory (Dover, New York, 1957)

  • [8] S. Abe, C. Beck, E. G. D. Cohen, Phys. Rev. E 76, 031102 (2007) http://dx.doi.org/10.1103/PhysRevE.76.031102

  • [9] J. Naudts, AIP Conf. Proc. 965, 84 (2007) http://dx.doi.org/10.1063/1.2828764

OPEN ACCESS

Journal + Issues

Search