Vitrification of a monatomic 2D simple liquid

Tomoko Mizuguchi 1  and Takashi Odagaki 1
  • 1 Department of Physics, Kyushu University, Fukuoka, 812-8581, Japan

Abstract

A monatomic simple liquid in two dimensions, where atoms interact isotropically through the Lennard-Jones-Gauss potential [M. Engel, H.-R. Trebin, Phys. Rev. Lett. 98, 225505 (2007)], is vitrified by the use of a rapid cooling technique in a molecular dynamics simulation. Transformation to a crystalline state is investigated at various temperatures and the time-temperature-transformation (TTT) curve is determined. It is found that the transformation time to a crystalline state is the shortest at a temerature 14% below the melting temperature T m and that at temperatures below T v ≡ 0:6T m the transformation time is much longer than the available CPU time. This indicates that a long-lived glassy state is realized for T ≤ T v.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] B. Bernu, J. P. Hansen, Y. Hiwatari, G. Pastore, Phys.Rev. A 36, 4891 (1987) http://dx.doi.org/10.1103/PhysRevA.36.4891

  • [2] W. Kob, H.-C. Andersen, Phys. Rev. E 52, 4134 (1995) http://dx.doi.org/10.1103/PhysRevE.52.4134

  • [3] R. Bush, J. Schroers, W. H. Wang, MRS Bull. 32, 620 (2007) http://dx.doi.org/10.1557/mrs2007.122

  • [4] W. van Megen, Phys. Rev. E 76, 061401 (2007) http://dx.doi.org/10.1103/PhysRevE.76.061401

  • [5] U. Bengtzelius, W. Götze, A. Sjölander, J. Phys. C 17, 5915 (1984) http://dx.doi.org/10.1088/0022-3719/17/33/005

  • [6] W. Götze, In: J. P. Hansen, D. Levesque, J. Zinn-Justin (Eds.), Liquids, Freezing and the Glass Transition (North Holland, Amsterdam, 1989) 287

  • [7] W. Götze, J. Phys.-Condens. Mat. 11, A1 (1999) http://dx.doi.org/10.1088/0953-8984/11/10A/002

  • [8] T. Odagaki, Phys. Rev. Lett. 75, 3701 (1995) http://dx.doi.org/10.1103/PhysRevLett.75.3701

  • [9] T. Odagaki, T, Yoshidome, A. Koyama, A. Yoshimori, J. Non-Crys. Solids, 352, 4843 (2006) http://dx.doi.org/10.1016/j.jnoncrysol.2006.02.146

  • [10] T. Odagaki, A. Yoshimori, J. Non-Cryst. Solids (in press)

  • [11] M. Mézard, and G. Parisi, J. Chem. Phys. 111, 1076 (1999) http://dx.doi.org/10.1063/1.479193

  • [12] M. Engel, H.-R. Trebin, Phys. Rev. Lett. 98, 225505 (2007) http://dx.doi.org/10.1103/PhysRevLett.98.225505

  • [13] M. Engel, PhD thesis, Stuttgart University (Stuttgart, Germany, 2008)

  • [14] T. Mizuguchi, T. Odagaki, M. Umezaki, T. Koumyou, J. Matsui, AIP Conf. Proc. 982, 234 (2008) http://dx.doi.org/10.1063/1.2897793

  • [15] Vo Van Hoang, T. Odagaki, Physica B 403, 3910 (2008) http://dx.doi.org/10.1016/j.physb.2007.10.015

  • [16] Al-Lehyani et al., Phys. Rev. B 64, 075109 (2001) http://dx.doi.org/10.1103/PhysRevB.64.075109

  • [17] M. Rechtsman, F. Stillinger, S. Torquato, Phys. Rev. Lett. 95, 228302 (2005) http://dx.doi.org/10.1103/PhysRevLett.95.228301

  • [18] M. Rechtsman, F. Stillinger, S. Torquato, Phys. Rev. E 73, 011406 (2006) http://dx.doi.org/10.1103/PhysRevE.73.011406

  • [19] K. Nishio, J. Koga, T. Yamaguchi, F. Yonezawa, J. Phys. Soc. Jpn. 73, 627 (2004) http://dx.doi.org/10.1143/JPSJ.73.627

  • [20] H. Senapati, R. K. Kadiyala, C. A. Angell, J. Phys. Chem. 95, 7050 (1991) http://dx.doi.org/10.1021/j100171a060

  • [21] S. Mukherjee, J. Schroers, W. L. Johnson, W.-K. Rhim, Phys. Rev. Lett. 94, 245501 (2005) http://dx.doi.org/10.1103/PhysRevLett.94.245501

  • [22] A. V. Evteev, A. T. Kosilov, E. V. Levchenko, O. B. Logachev J. Exp. Theor. Phys.+ 101, 521 (2005) http://dx.doi.org/10.1134/1.2103221

  • [23] Y. Zhang, Li Wang, W. Wang, J. Phys.-Condens. Mat. 19, 196106 (2007) http://dx.doi.org/10.1088/0953-8984/19/19/196106

OPEN ACCESS

Journal + Issues

Search