Statistical, noise-related non-classicality’s indicator

Flavia Pennini, Angelo Plastino 1 , and Gustavo Ferri 3
  • 1 Instituto de Física La Plata-CCT-CONICET, Fac. de Ciencias Exactas, Universidad Nacional de La Plata, C.C. 727, 1900, La Plata, Argentina
  • 2 Departamento de Física, Universidad Católica del Norte, Av. Angamos, 0610, Antofagasta, Chile
  • 3 Facultad de Ciencias Exactas, Universidad Nacional de La Pampa, Peru y Uruguay Santa Rosa, La Pampa, Argentina

Abstract

Finding signs of the classical-quantum border is a very important task of perennial interest. We show, using semiclassical arguments, that the frontier between the classical and quantum domains can be characterized by recourse to idiosyncratic features of a delimiter parameter associated with the concepts of i) noise) ii) Husimi distribution functions, iii) Wherl’s entropy, and iv) escort distributions.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] R. J. Glauber, Phys. Rev. 131, 2766 (1963) http://dx.doi.org/10.1103/PhysRev.131.2766

  • [2] A. Kenfack, K. Zyczkowski, J. Opt. B-Quantum S. O. 6, 396 (2004) http://dx.doi.org/10.1088/1464-4266/6/10/003

  • [3] F. Pennini, A. Plastino, Phys. Rev. E 69, 057101 (2004) http://dx.doi.org/10.1103/PhysRevE.69.057101

  • [4] C. Beenakker, C. Schönenberger, Phys. Today 56, 37 (2003) http://dx.doi.org/10.1063/1.1583532

  • [5] D. F. Walls, G. J. Milburn, Quantum optics (Springer, New York, 1994)

  • [6] P. Meystre, M. Sargent III, Elements of quantum optics (Springer, New York, 1990)

  • [7] L. Mandel, E. Wolf, Optical coherence and quantum optics (Cambridge University Press, New York, 1995)

  • [8] E. C. G. Sudarshan, Phys. Rev. Lett. 10, 277 (1963) http://dx.doi.org/10.1103/PhysRevLett.10.277

  • [9] J. R. Klauder, B. S. Skagerstam, Coherent states (World Scientific, Singapore, 1985)

  • [10] A. Anderson, J. J. Halliwell, Phys. Rev. D 48, 2753 (1993) http://dx.doi.org/10.1103/PhysRevD.48.2753

  • [11] A. Wehrl, Rep. Math. Phys. 16, 353 (1979) http://dx.doi.org/10.1016/0034-4877(79)90070-3

  • [12] K. Husimi, Proceedings of the Physics and Mathematics Society of Japan 22, 264 (1940)

  • [13] E. H. Lieb, Commun. Math. Phys. 62, 35 (1978) http://dx.doi.org/10.1007/BF01940328

  • [14] J. Bajer, A. Miranowicz, J. Opt. B-Quantum S. O. 2, L10 (2000) http://dx.doi.org/10.1088/1464-4266/2/3/102

  • [15] F. Haug, M. Freyberger, K. Vogel, W. P. Schleich, Quantum Opt. 5, 65 (1993) http://dx.doi.org/10.1088/0954-8998/5/2/001

  • [16] C. Beck, F. Schlögl, Thermodynamics of chaotic systems (Cambridge University Press, New York, 1993) http://dx.doi.org/10.1017/CBO9780511524585

  • [17] F. Pennini, A. Plastino, G. L. Ferri, Physica A 383, 782 (2007) http://dx.doi.org/10.1016/j.physa.2007.05.009

  • [18] F. Pennini, A. Plastino, G. L. Ferri, F. Olivares, Phys. Lett. A 372, 4870 (2008) http://dx.doi.org/10.1016/j.physleta.2008.05.028

  • [19] J. Batle, A.R. Plastino, M. Casas, A. Plastino, J. Phys. A-Math. Gen. 35, 10311 (2002) http://dx.doi.org/10.1088/0305-4470/35/48/307

  • [20] W. J. Munro, D. F. V. James, A. G. White, P. G. Kwiat, Phys. Rev. A 64, 0303202 (2003)

  • [21] F. Pennini, A. Plastino, Phys. Lett. A 326, 20 (2004) http://dx.doi.org/10.1016/j.physleta.2004.04.024

  • [22] D. J. Tannor, Introduction to Quantum Mechanics: Time-Dependent Perspective (University Science Books, USA, 2007)

OPEN ACCESS

Journal + Issues

Search