Analytical approximate solutions for two-dimensional viscous flow through expanding or contracting gaps with permeable walls

Saeed Dinarvand 1 , Mohammad Rashidi 1 ,  and Ahmad Doosthoseini 1
  • 1 Mechanical Engineering Department, Engineering Faculty of Bu-Ali Sina University, Hamedan, Iran

Abstract

In this paper, the problem of laminar, isothermal, incompressible and viscous flow in a rectangular domain bounded by two moving porous walls, which enable the fluid to enter or exit during successive expansions or contractions is solved analytically by using the homotopy analysis method (HAM). Graphical results are presented to investigate the influence of the nondimensional wall dilation rate α and permeation Reynolds number Re on the velocity, normal pressure distribution and wall shear stress. The obtained solutions, in comparison with the numerical solutions, demonstrate remarkable accuracy. The present problem for slowly expanding or contracting walls with weak permeability is a simple model for the transport of biological fluids through contracting or expanding vessels.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] A. H. Nayfeh, Introduction to perturbation techniques (Wiley, New York, 1979)

  • [2] R. H. Rand, D. Armbruster, Perturbation methods, bifurcation theory and computer algebraic (Springer-Verlag, New York, 1987)

  • [3] A. M. Lyapunov, General problem on stability of motion (English translation), (Taylor and Francis, London, 1992)

  • [4] A. V. Karmishin, A. I. Zhukov, V. G. Kolosov, Methods of dynamics calculation and testing for thin-walled structures (Mashinostroyenie, Moscow, 1990)

  • [5] G. Adomian, Solving frontier problems of physics: the Decomposition method, (Kluwer Academic Publishers, Dordrecht, 1994)

  • [6] S. J. Liao, PhD Thesis, Shanghai Jiao Tong University (Shanghai, China 1992)

  • [7] S. J. Liao, J. Fluid Mech. 385, 101 (1999) http://dx.doi.org/10.1017/S0022112099004292

  • [8] S. J. Liao, Int. J. Nonlinear Mech. 34, 759 (1999) http://dx.doi.org/10.1016/S0020-7462(98)00056-0

  • [9] S. J. Liao, J. Fluid Mech. 488, 189 (2003) http://dx.doi.org/10.1017/S0022112003004865

  • [10] S. J. Liao, Beyond Perturbation: Introduction to the Homotopy Analysis Method (Chapman and Hall/CRC Press, Boca Raton 2003)

  • [11] S. J. Liao, Appl. Math. Comput. 147, 499 (2004) http://dx.doi.org/10.1016/S0096-3003(02)00790-7

  • [12] S. J. Liao, Appl. Math. Comput. 169, 1186 (2005) http://dx.doi.org/10.1016/j.amc.2004.10.058

  • [13] M. Sajid, T. Hayat, S. Asghar, Nonlinear Dynam. 50, 27 (2007) http://dx.doi.org/10.1007/s11071-006-9140-y

  • [14] F. M. Allan, Appl. Math. Comput. 190, 6 (2007) http://dx.doi.org/10.1016/j.amc.2006.12.074

  • [15] S. Abbasbandy, Phys. Lett. A, 360, 109, (2006) http://dx.doi.org/10.1016/j.physleta.2006.07.065

  • [16] S. Abbasbandy, Chemical. Eng. J. (in press)

  • [17] F. M. Allan, Chaos Soliton. Fract. (in press)

  • [18] F. M. Allan, M. I. Syam, J. Comput. Appl. Math., 182, 362, (2005) http://dx.doi.org/10.1016/j.cam.2004.12.017

  • [19] T. Hayat, T. Javed, Phys. Lett. A, 370, 243, (2007) http://dx.doi.org/10.1016/j.physleta.2007.05.108

  • [20] M. Sajid, A. M. Siddiqui, T. Hayat, Int. J. Eng. Sci., 45, 381, (2007) http://dx.doi.org/10.1016/j.ijengsci.2007.04.010

  • [21] T. Hayat, M. Sajid, Int. J. Heat Mass Tran., 50, 75, (2007) http://dx.doi.org/10.1016/j.ijheatmasstransfer.2006.06.045

  • [22] T. Hayat, Naveed Ahmed, M. Sajid, S. Asghar, Comput. Math. Appl., 54, 407, (2007) http://dx.doi.org/10.1016/j.camwa.2006.12.036

  • [23] T. Hayat, M. Sajid, M. Ayub, Communications in Nonlinear Science and Numerical Simulation, 12, 1481, (2007) http://dx.doi.org/10.1016/j.cnsns.2006.02.009

  • [24] Y. Bouremel, Communications in Nonlinear Science and Numerical Simulation, 12, 714, (2007) http://dx.doi.org/10.1016/j.cnsns.2005.07.001

  • [25] M. M. Rashidi, G. Domairry, S. Dinarvand, Communications in Nonlinear Science and Numerical Simulation, 14, 708, (2009) http://dx.doi.org/10.1016/j.cnsns.2007.09.015

  • [26] Z. Ziabakhsh, G. Domairry, Communications in Nonlinear Science and Numerical Simulation, 14, 1284, (2009) http://dx.doi.org/10.1016/j.cnsns.2007.12.011

  • [27] J. Cheng, S. J. Liao, R. N. Mohapatra, K. Vajravelu, J. Math. Anal. Appl., 343, 233, (2008) http://dx.doi.org/10.1016/j.jmaa.2008.01.050

  • [28] T. T. Zhang, L. Jia, Z. C. Wang, X. Li, Phys. Lett. A, 372, 3223, (2008) http://dx.doi.org/10.1016/j.physleta.2008.01.077

  • [29] H. N. Chang, J. S. Ha, J. K. Park, I. H. Kim, H. D. Shin, J. Biomech., 22, 1257, (1989) http://dx.doi.org/10.1016/0021-9290(89)90228-5

  • [30] J. Majdalani, C. Zhou, C. A. Dawson, J. Biomech., 35, 1399, (2002) http://dx.doi.org/10.1016/S0021-9290(02)00186-0

  • [31] E. C. Dauenhauer, J. Majdalani, AIAA J., 44, 99, (1999)

  • [32] J. Majdalani, C. Zhou, ZAMM-Z. Angew. Math. Me., 83, 181, (2003) http://dx.doi.org/10.1002/zamm.200310018

  • [33] Y. Z. Boutros, M. B. Abd-el-Malek, N. A. Badran, H. S. Hassan, J. Comput. Appl. Math. (in press)

  • [34] A. S. Berman, J. Appl. Phys., 24, 1232, (1953) http://dx.doi.org/10.1063/1.1721476

OPEN ACCESS

Journal + Issues

Open Physics (former Central European Journal of Physics) is a peer-reviewed Open Access journal, devoted to the publication of fundamental research results in all fields of physics.

Search