Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access July 21, 2009

Noise analysis of coaxial Schottky barrier carbon nanotube fets using non equilibrium Green’s function formalism

  • Iman Hassaninia EMAIL logo , Rahim Ghayour , Habib Abiri and Mohammad Sheikhi
From the journal Open Physics

Abstract

The effect of noise on the performance of Schottky Barrier Carbon Nanotube Field Effect Transistors (SB-CNTFETs) has been investigated under various bias conditions. In order to calculate the noise power spectral density, the Non-Equilibrium Green’s Function formalism (NEGF) is used to obtain the transmission coefficient and the number of carriers inside the channel. Results are presented in two sections: In the first section the Hooge’s empirical rule is used to investigate the flicker noise properties of SB-CNTFETs with defects in the gate oxide region, while in the second section the thermal and shot noise properties of SB-CNTFETs are studied. Finally, the best bias points in the ON and OFF states have been suggested according to the total noise power spectral density and the device signal to noise ratio.

[1] A. Javey et al., Nat. Mater. 1, 241 (2002) http://dx.doi.org/10.1038/nmat76910.1038/nmat769Search in Google Scholar

[2] J. Appenzeller et al., IEEE T. Nanotechnol. 1, 184 (2002) http://dx.doi.org/10.1109/TNANO.2002.80739010.1109/TNANO.2002.807390Search in Google Scholar

[3] J. Guo, S. Datta, M. S. Lundstrom, IEEE T. Electron. Dev. 51, 172 (2004) http://dx.doi.org/10.1109/TED.2003.82188310.1109/TED.2003.821883Search in Google Scholar

[4] J. Guo, S. Koswatta, N. Neophytou, M. S. Lundstrom, International Journal of High Speed Electronics and Systems 16, 897 (2006) http://dx.doi.org/10.1142/S012915640600407710.1142/S0129156406004077Search in Google Scholar

[5] M. Ishigami et al., Appl. Phys. Lett 88, 203116 (2006) http://dx.doi.org/10.1063/1.220668510.1063/1.2206685Search in Google Scholar

[6] Ya. Blanter, M. Buttiker, Phys. Rep. 336, 1 (2000) http://dx.doi.org/10.1016/S0370-1573(99)00123-410.1016/S0370-1573(99)00123-4Search in Google Scholar

[7] L. C. Castro et al., IEEE T. Nanotechnol. 2, 175 (2003) http://dx.doi.org/10.1109/TNANO.2003.81722810.1109/TNANO.2003.817228Search in Google Scholar

[8] R. Martel et al., Phys. Rev. Lett. 87, 2568051 (2001) http://dx.doi.org/10.1103/PhysRevLett.87.25680510.1103/PhysRevLett.87.256805Search in Google Scholar PubMed

[9] D. L. John, L. C. Castro, J. Clifford, D. L. Pulfrey, IEEE T. Nanotechnol. 2, 175 (2003) http://dx.doi.org/10.1109/TNANO.2003.81722810.1109/TNANO.2003.817228Search in Google Scholar

[10] G. Fiori, G. Iannaccone, G. Klimeck, IEEE T. Electron. Dev. 53, 1782 (2006) http://dx.doi.org/10.1109/TED.2006.87801810.1109/TED.2006.878018Search in Google Scholar

[11] S. Datta, In: Proc. IEEE Electron Device Meeting, (2002) 703–706 10.1109/IEDM.2002.1175935Search in Google Scholar

[12] S. Datta, Quantum transport from: atom to transistor (Cambridge University Press, Cambridge, 2005) 10.1017/CBO9781139164313Search in Google Scholar

[13] J. Guo et al., Int. J. Multiscale Com. 2, 257 (2004) http://dx.doi.org/10.1615/IntJMultCompEng.v2.i2.6010.1615/IntJMultCompEng.v2.i2.60Search in Google Scholar

[14] R. Venugopal, Z. Ren, S. Datta, M. S. Lundstrom, J. Appl. Phys. 92, 3730 (2002) http://dx.doi.org/10.1063/1.150316510.1063/1.1503165Search in Google Scholar

[15] X. Tongsheng, L. F. Register, S. K. Banerjee, IEEE T. Nanotechnol. 5, 80 (2006) http://dx.doi.org/10.1109/TNANO.2006.86969310.1109/TNANO.2006.869693Search in Google Scholar

[16] G. W. Brown, B. W. Lindsay, Solid State Electron. 19, 991 (1976) http://dx.doi.org/10.1016/0038-1101(76)90177-510.1016/0038-1101(76)90177-5Search in Google Scholar

[17] Z. Ren, PhD thesis, Purdue University, (West Lafayette, USA, 2001) Search in Google Scholar

[18] A. K. Raychaudhuri, A. Ghosh, S. Kar, Pramana 58, 343 (2002) http://dx.doi.org/10.1007/s12043-002-0019-810.1007/s12043-002-0019-8Search in Google Scholar

[19] K. K. Hung, P. K. Ko, Y. C. Cheng, IEEE T. Electron. Dev. 37, 654 (1990) http://dx.doi.org/10.1109/16.4777010.1109/16.47770Search in Google Scholar

[20] T. H. Ning, C. T. Sah, Phys. Rev. B 6, 4605 (1972) http://dx.doi.org/10.1103/PhysRevB.6.460510.1103/PhysRevB.6.4605Search in Google Scholar

[21] L. DiCarlo, J. R. Williams, Y. Zhang, D. T. McClure, C. M. Marcus, Phys. Rev. Lett. 100, 156801 (2008) http://dx.doi.org/10.1103/PhysRevLett.100.15680110.1103/PhysRevLett.100.156801Search in Google Scholar PubMed

[22] T. Danelle Au, K, Khoo, Rep. EECS-231, University of California at Berkeley (California, 1998) Search in Google Scholar

[23] J. Appenzeller et al., IEEE T. Nanotechnol. 6, 368 (2007) http://dx.doi.org/10.1109/TNANO.2007.89205210.1109/TNANO.2007.892052Search in Google Scholar

[24] Z. Chen et al., IEEE Electr. Device L. 29, 183 (2007) http://dx.doi.org/10.1109/LED.2007.91406910.1109/LED.2007.914069Search in Google Scholar

[25] S. Krompiewski, Nanotechnology 18, 485708 (2007) http://dx.doi.org/10.1088/0957-4484/18/48/48570810.1088/0957-4484/18/48/485708Search in Google Scholar

Published Online: 2009-7-21
Published in Print: 2009-12-1

© 2009 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 28.3.2024 from https://www.degruyter.com/document/doi/10.2478/s11534-009-0051-7/html
Scroll to top button