Near-field scanning optical microscopy local luminescence studies of rhodamine dye

Petr Klapetek 1 , Juraj Bujdák, and Jiří Buršík 4
  • 1 Czech Metrology Institute, Okružní 31, 638 00, Brno, Czech Republic
  • 2 Institute of Inorganic Chemistry, Slovak Academy of Sciences, 845 36, Bratislava, Slovakia
  • 3 Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences of Comenius University, 842 15, Bratislava, Slovakia
  • 4 Institute of Physics of Materials, Žižkova 22, 616 62, Brno, Czech Republic

Abstract

This article presents results of near-field scanning optical microscope measurement of local luminescence of rhodamine 3B intercalated in montmorillonite samples. We focus on how local topography affects both the excitation and luminescence signals and resulting optical artifacts. The Finite Difference in Time Domain method (FDTD) is used to model the electromagnetic field distribution of the full tip-sample geometry including far-field radiation. Even complex problems like localized luminescence can be simulated computationally using FDTD and these simulations can be used to separate the luminescence signal from topographic artifacts.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] M. A. Paesler, P. J. Moyer, Near-Field Optics, Theory, Instrumentation and Applications (John Wiley & Sons, New York, 1996)

  • [2] J. S. Villarubia, J. Res. Natl. Inst. Stan. 102, 425 (1997)

  • [3] B. Hecht etal., J. Chem. Phys. 112, 7761 (2000) http://dx.doi.org/10.1063/1.481382

  • [4] B. Hecht, H. Bielefeldt, Y. Inouye, D. W. Pohl, J. Appl. Phys. 81, 2492 (1997) http://dx.doi.org/10.1063/1.363956

  • [5] K. D. Weston, J. A. DeAro, S. K. Buratto, Rev. Sci. Instrum. 67, 2924 (1996) http://dx.doi.org/10.1063/1.1147073

  • [6] O. Fenwick, G. Latini, F. Cacialli, Synthetic Met. 147, 171 (2004) http://dx.doi.org/10.1016/j.synthmet.2004.06.030

  • [7] P. G. Gucciardi, M. Colloci, Appl. Phys. Lett. 79, 1543 (2001) http://dx.doi.org/10.1063/1.1402154

  • [8] A. Rosenberger et al., J. Appl. Phys. 89, 7727 (2001) http://dx.doi.org/10.1063/1.1364642

  • [9] S. Guenes, N. S. Sariciftci, Inorg. Chim, Acta 361, 581 (2008) http://dx.doi.org/10.1016/j.ica.2007.06.042

  • [10] J. Bujdák, Appl. Clay Sci. 34, 58 (2006) http://dx.doi.org/10.1016/j.clay.2006.02.011

  • [11] P. Innocenzi, B. Lebeau, J. Mater. Chem. 15, 3821 (2005) http://dx.doi.org/10.1039/b506028a

  • [12] C. Sanchez, B. Lebeau, F. Chaput, J. P. Boilot, Adv. Mater. 15, 1969 (2003) http://dx.doi.org/10.1002/adma.200300389

  • [13] J. Bujdák, V. Martínez Martínez, F. LopézArbeloa, N. Iyi, Langmuir 23, 1851 (2007) http://dx.doi.org/10.1021/la062437b

  • [14] T. J. Antosiewicz, T. Szoplik, Opt. Express 15, 7845 (2007)

  • [15] S. H. Simpson, S. Hanna, Opt. Commun. 256, 476 (2005) http://dx.doi.org/10.1016/j.optcom.2005.06.073

  • [16] J. T. Krug, E. J. Sanchez, X. Sunney Xie, J. Chem. Phys. 116, 10895 (2002) http://dx.doi.org/10.1063/1.1479723

  • [17] O. M. Ramahi, IEEE T. Antenn. Propag. 45 (1997)

OPEN ACCESS

Journal + Issues

Search