Proposal to improve the behaviour of self-energy contributions to the S-matrix

Gábor Tóth
  • 1 International School for Advanced Studies (SISSA), Via Beirut 2-4, 34014, Trieste, Italy
  • 2 INFN, Sezione di Trieste, Trieste, Italy
  • 3 Research Institute for Particle and Nuclear Physics, Hungarian Academy of Sciences, Pf. 49, 1525, Budapest, Hungary

Abstract

A simple modification of the definition of the S-matrix is proposed. It is expected that the divergences related to nonzero self-energies are considerably milder with the modified definition than with the usual one. This conjecture is verified in a few examples using perturbation theory. The proposed formula is written in terms of the total Hamiltonian operator and a free Hamiltonian operator and is therefore applicable in any case when these Hamiltonian operators are known.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] W. Heisenberg, Z. Phys. 120, 513 (1943) http://dx.doi.org/10.1007/BF01329800

  • [2] W. Heisenberg, Z. Phys. 120, 673 (1943) http://dx.doi.org/10.1007/BF01336936

  • [3] J. A. Wheeler, Phys. Rev. 52, 1107 (1937) http://dx.doi.org/10.1103/PhysRev.52.1107

  • [4] M. E. Peskin, D. V. Schroeder, An introduction to quantum field theory (Addison-Wesley, Reading, Massachusetts, 1995)

  • [5] M. Gell-Mann, F. Low, Phys. Rev. 84, 350 (1951) http://dx.doi.org/10.1103/PhysRev.84.350

  • [6] A. L. Fetter, J. D. Walecka, Quantum theory of manyparticle systems (Dover Publications, Mineola, New York, 2003) Chap. 3

  • [7] S. Weinberg, The quantum theory of fields I (Cambridge University Press, Cambridge, New York, 1995-2000)

  • [8] J. D. Bjorken, S. D. Drell, Relativistic quantum mechanics (McGraw-Hill, New York, 1964)

  • [9] J. D. Bjorken, S. D. Drell, Relativistic quantum fields (McGraw-Hill, New York, 1965)

  • [10] D. Iagolnitzer, Scattering in quantum field theories: the axiomatic and constructive approaches (Princeton University Press, Princeton, 1993)

  • [11] J. R. Taylor, Scattering theory: the quantum theory on nonrelativistic collisions (Wiley, New York, 1972)

  • [12] R. Newton, Scattering theory of waves and particles, 2nd ed. (Springer-Verlag, Berlin, 1982)

  • [13] M. Gell-Mann, M. L. Goldberger, Phys. Rev. 91, 398 (1953) http://dx.doi.org/10.1103/PhysRev.91.398

  • [14] J. Pirenne, Helv. Phys. Acta 21, 226 (1948)

  • [15] J. Pirenne, Phys. Rev. 86, 395 (1952) http://dx.doi.org/10.1103/PhysRev.86.395

  • [16] G. Delfino, G. Mussardo, P. Simonetti, Nucl. Phys. B 473, 469 (1996) http://dx.doi.org/10.1016/0550-3213(96)00265-9

  • [17] F. Schwabl, Quantum mechanics, 2nd ed. (Springer-Verlag, Berlin, 1995)

  • [18] G. Delfino, G. Mussardo, P. Simonetti, Nucl. Phys. B 432, 518 (1994) http://dx.doi.org/10.1016/0550-3213(94)90032-9

OPEN ACCESS

Journal + Issues

Search