New mechanism of solution of the k B T-problem in magnetobiology

Zakirjon Kanokov, Jürn Schmelzer, and Avazbek Nasirov
  • 1 Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna, Russia
  • 2 Faculty of Physics, M. Ulugbek National University of Uzbekistan, Tashkent, Uzbekistan
  • 3 Institut für Physik, Universität Rostock, Rostock, Germany
  • 4 Institute of Nuclear Physics, Tashkent, Uzbekistan


The effects of ultralow-frequency or static magnetic and electric fields on biological processes is of huge interest for researchers due to the resonant change of the intensity of biochemical reactions, despite the energy in such fields being small in comparison with the characteristic energy k B T of the chemical reactions. In the present work, a simplified model to study the effects of weak static magnetic fields on fluctuations of the random ionic currents in blood is presented with a view to solving the k B T problem in magnetobiology. An analytic expression for the kinetic energy of the molecules dissolved in certain liquid media is obtained. The values of the magnetic field leading to resonant effects in capillaries are then estimated. The numerical estimates show that the resonant values of the energy of molecules in capillaries and the aorta are different. These estimates prove that under identical conditions, a molecule in the aorta gets 10−9 times less energy than the molecules in blood capillaries. Therefore, the capillaries are very sensitive to the resonant effect. As the magnetic field approaches the resonant value, the average energy of a molecule localized in a capillary is increased by several orders of magnitude as compared to its thermal energy. This amount of energy is sufficient to cause deterioration of certain chemical bonds.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] W. E. Koch, B. A. Koch, A. N. Martin, G. C. Moses, Comp. Biochem. Physiol. A105, 617 (1993)

  • [2] J. Harland, S. Eugstrom, R. Liburdy, Cell Biochem. Biophys. 31, 295 (1999)

  • [3] G. C. Moses, A. H. Martin, Biochem. Mol. Biol. Int. 29, 757 (1993)

  • [4] V. N. Binhi, In: F. Bersani (Ed.), Electricity and Magnetism in Biology and Medicine (Kluwer, Acad./Plenum Publ., New York, 1999)

  • [5] V. V. Lednev, Biophys.-USSR 41, 224 (1996)

  • [6] V. V. Lednev et al., Biophys.-USSR 41, 815 (1996)

  • [7] V. V. Lednev et al., Dokl. Akad. Nauk SSSR+ 348, 830 (1996)

  • [8] N. G. Ptitsyna, M. I. Tyasto, G. Villoresi, L. I. Dorman, N. Lucci, Phys.-Usp.+ 41, 687 (1998)

  • [9] V. N. Binhi, A. V. Savin, Phys.-Usp.+ 46, 259 (2003)

  • [10] V. N. Binhi, A. B. Rubin, Electromagn. Biol. Med. 26, 45 (2007)

  • [11] Z. Kanokov, J. W. P. Schmelzer, A. K. Nasirov, arXiv:0904.1198v1

  • [12] Z. Kanokov, J. W. P. Schmelzer, A. K. Nasirov, arXiv:0905.2669v1

  • [13] D. Marmon, L. Heller, Phisiologiya serdechno-sosudistoysistemy (Izdatelstvo Piter, St. Petersburg, 2002)(in Russian)

  • [14] Yu. N. Kukushkin, Khimiya vokrug nas (Vysshaya shkola, Moscow, 1992)(in Russian)

  • [15] J. B. Johnson, Phys. Rev. 32, 97 (1928)

  • [16] G. N. Bochkov, Yu. E. Kuzovlev, Usp. Fiz. Nauk.+ 141, 151 (1983) (in Russian)

  • [17] J. Keizer, Statistical Thermodynamics of Non-Equilibrium Processes (Springer, Berlin, 1987)

  • [18] E. M. Purcell, Electricity and magnetism. Berkeley physics course, Vol. 2 (Mc Graw-Hill book company, 1984)

  • [19] N. G. van Kampen, Stochastic Processes in Physics and Chemistry (North-Holland, Amsterdam, 1981)

  • [20] R. D. Shannon, Acta Crystallogr. A 32, 751 (1976)


Journal + Issues