Molecular dynamics simulation of zirconia melting

Sergio Davis 1 , Anatoly Belonoshko 2 , Anders Rosengren 2 , Adri Duin 3 , and Börje Johansson
  • 1 Applied Materials Physics, Department of Materials Science and Engineering, KTH, SE-100 44, Stockholm, Sweden
  • 2 Condensed Matter Theory, Department of Theoretical Physics, AlbaNova University Center, KTH, SE-106 91, Stockholm, Sweden
  • 3 Department of Mechanical and Nuclear Engineering, Pennsylvania State University, 136 Research East Building, Bigler Road, University Park, PA, 16802, USA
  • 4 Condensed Matter Theory Group, Department of Physics, Uppsala University, Uppsala, Box 530, Sweden

Abstract

The melting point for the tetragonal and cubic phases of zirconia (ZrO2) was computed using Z-method microcanonical molecular dynamics simulations for two different interaction models: the empirical Lewis-Catlow potential versus the relatively new reactive force field (ReaxFF) model. While both models reproduce the stability of the cubic phase over the tetragonal phase at high temperatures, ReaxFF also gives approximately the correct melting point, around 2900 K, whereas the Lewis-Catlow estimate is above 6000 K.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] C. A. J. Fisher, H. Matsubara, Comp. Mater. Sci. 14, 177 (1999) http://dx.doi.org/10.1016/S0927-0256(98)00104-9

  • [2] M. Kilo, R. A. Jackson, G. Borchardt, Phil. Mag. Lett. 83, 3309 (2003)

  • [3] F. Shimojo, T. Okabe, F. Tachibana, M. Kobayashi, H. Okazaki, J. Phys. Soc. Jpn. 61, 2848 (1992) http://dx.doi.org/10.1143/JPSJ.61.2848

  • [4] F. Shimojo, H. Okazaki, J. Phys. Soc. Jpn. 61, 4106 (1992) http://dx.doi.org/10.1143/JPSJ.61.4106

  • [5] H. W. Brinkman, W. J. Briels, H. Verweij, Chem. Phys. Lett. 247, 386 (1995) http://dx.doi.org/10.1016/S0009-2614(95)01231-1

  • [6] Y. W. Tang, Q. Zhang, K. Y. Chan, Chem. Phys. Lett. 385, 202 (2004) http://dx.doi.org/10.1016/j.cplett.2003.12.097

  • [7] R. Krishnamurty, Y. G. Yoon, D. J. Srolovitz, R. Car, J. Am. Ceram. Soc. 87, 1821 (2004) http://dx.doi.org/10.1111/j.1151-2916.2004.tb06325.x

  • [8] M. Kilo, Diffus. De. A 242–244, 185 (2005)

  • [9] G. V. Lewis, C. R. A. Catlow, J. Phys. C Solid State 18, 1149 (1985) http://dx.doi.org/10.1088/0022-3719/18/6/010

  • [10] A. C. T. van Duin, S. Dasgupta, F. Lorant, W. A. Goddard, J. Phys. Chem. A 105, 9396 (2001) http://dx.doi.org/10.1021/jp004368u

  • [11] A. C. T. van Duin, B. V. Merinov, S. S. Jang, W. A. Goddard, J. Phys. Chem. A 112, 3133 (2008) http://dx.doi.org/10.1021/jp076775c

  • [12] A. B. Belonoshko, N. V. Skorodumova, A. Rosengren, B. Johansson, Phys. Rev. B 73, 012201 (2006) http://dx.doi.org/10.1103/PhysRevB.73.012201

  • [13] A. B. Belonoshko et al., Phys. Rev. B 76, 064121 (2007) http://dx.doi.org/10.1103/PhysRevB.76.064121

  • [14] A. B. Belonoshko, Geochim. Cosmochim. Ac. 58, 4039 (1994) http://dx.doi.org/10.1016/0016-7037(94)90265-8

  • [15] A. B. Belonoshko, Geochim. Cosmochim. Ac. 58, 1557 (1994) http://dx.doi.org/10.1016/0016-7037(94)90558-4

  • [16] A. B. Belonoshko, A. Rosengren, L. Burakovsky, D. L. Preston, B. Johansson, Phys. Rev. B 79, 220102 (2009) http://dx.doi.org/10.1103/PhysRevB.79.220102

  • [17] N. Ishizawa, Y. Matsushima, M. Hayashi, M. Ueki, Acta Crystallogr. B 55, 726 (1999) http://dx.doi.org/10.1107/S0108768199005108

  • [18] K. Refson, Comput. Phys. Commun. 126, 310 (2000) http://dx.doi.org/10.1016/S0010-4655(99)00496-8

  • [19] N. S. Fateeva, L. F. Vereshchagin, JETP Lett.+ 14, 153 (1971)

  • [20] J. M. Shaner, G. R. Gathers, C. Minichino, High Temp.-High Press. 9, 331 (1977)

  • [21] A. B. Belonoshko et al., Phys. Rev. Lett. 92, 195701 (2004) http://dx.doi.org/10.1103/PhysRevLett.92.195701

  • [22] A. B. Belonoshko et al., Phys. Rev. Lett. 100, 135701 (2008) http://dx.doi.org/10.1103/PhysRevLett.100.135701

OPEN ACCESS

Journal + Issues

Search