The Maslov correction in the semiclassical Feynman integral

Peter. Horváthy 1
  • 1 Laboratoire de Mathématiques et de Physique Théorique, Université de Tours, Parc de Grandmont, F-37 200, Tours, France

Abstract

The Maslov correction to the wave function is the jump of $$ \left( { - \frac{\pi } {2}} \right) $$ in the phase when the system passes through a caustic. This can be explained by studying the second variation and the geometry of paths, as conveniently seen in Feynman’s path integral framework. The results can be extended to any system using the semiclassical approximation. The 1-dimensional harmonic oscillator is used to illustrate the different derivations reviewed here.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] M. Gouy, Comptes rendus hebdomadaires des séances de l’Académie des Sciences 110, 1251 (1890)

  • [2] J.B. Keller, Ann. Phys. 4, 180 (1958) http://dx.doi.org/10.1016/0003-4916(58)90032-0

  • [3] V.P. Maslov, Asymptotic methods in the calculus of perturbations (MGU, Moscow, 1965) (in Russian)

  • [4] V.I. Arnold, Funktional’nyi Analiz i Ego Prilozheniya 1, 1 (1967) (in Russian) http://dx.doi.org/10.1007/BF01075861

  • [5] J.-M. Souriau, Lec. Notes Phys. 50, 117 (1976) http://dx.doi.org/10.1007/3-540-07789-8_13

  • [6] V. Marino, L. Gualandari, Indice di Maslov. Lezioni del Prof. Souriau, Pubblicazioni del’Istituto di Matematica Applicata N. 191. Università di Roma (1977) (in Italian)

  • [7] R.P. Feynman, A.R. Hibbs, Quantum Mechanics and path integrals (McGraw-Hill, New York, 1965)

  • [8] P.A. Horváthy, Int. J. Theor. Phys. 18, 245 (1979) http://dx.doi.org/10.1007/BF00671761

  • [9] L.S. Schulman, In: A.M. Arthurs (Ed.),, Functional integration and its applications (Clarendon Pross, Oxford, 1975) 144

  • [10] B.K. Cheng, Int. J. Theor. Phys. 23, 1099 (1984) http://dx.doi.org/10.1007/BF02213422

  • [11] J.Q. Liang, G. Morandi, Phys. Lett. A 160, 9 (1991) http://dx.doi.org/10.1016/0375-9601(91)90197-G

  • [12] P.A. Horváthy, L. Úry, Acta Phys. Hung. 42, 251 (1977) http://dx.doi.org/10.1007/BF03157493

  • [13] P.A. Horváthy, Phys. Lett. A 76, 11 (1980) http://dx.doi.org/10.1016/0375-9601(80)90133-4

  • [14] P.A. Horváthy, Lect. Notes Math. 836, 67 (1980) http://dx.doi.org/10.1007/BFb0089727

  • [15] B.K. Cheng, Phys. Scripta 29, 351 (1984) http://dx.doi.org/10.1088/0031-8949/29/4/012

  • [16] B.K. Cheng, Phys. Rev. A 30, 1491 (1984) http://dx.doi.org/10.1103/PhysRevA.30.1491

  • [17] G. Sagnac, Comptes rendus hebdomadaires des séances de l’Académie des Sciences 157, 708 (1913)

  • [18] F. Hasselbach, M. Niklas, Phys. Rev. A 48, 143 (1993) http://dx.doi.org/10.1103/PhysRevA.48.143

  • [19] R. Anderson, H.R. Bilger, G.E. Stedman, Am. J. Phys. 62, 975 (1994) http://dx.doi.org/10.1119/1.17656

  • [20] F. Hasselbach, Rep. Prog. Phys. 73, 016101 (2010) http://dx.doi.org/10.1088/0034-4885/73/1/016101

  • [21] C. DeWitt-Morette, Ann. Phys. 97, 367 (1976) http://dx.doi.org/10.1016/0003-4916(76)90041-5

  • [22] S. Levit, U. Smilansky, Ann. Phys. 103, 198 (1977) http://dx.doi.org/10.1016/0003-4916(77)90269-X

  • [23] M. Morse, Calculus of variations in the large (Transactions of the AMS, Providence, 1934)

  • [24] J. Milnor, Morse Theory (Princeton U.P., Princeton, 1963)

  • [25] W.H. Miller, J. Chem. Phys. 53, 1949 (1970) http://dx.doi.org/10.1063/1.1674275

  • [26] W.H. Miller, Adv. Chem. Phys. 25, 69 (1974) http://dx.doi.org/10.1002/9780470143773.ch2

  • [27] R.A. Marcus, J. Chem. Phys. 54, 3965 (1971) http://dx.doi.org/10.1063/1.1675453

  • [28] S. Levit, U. Smilansky, D. Pelte, Phys. Lett. B 53, 39 (1974) http://dx.doi.org/10.1016/0370-2693(74)90338-4

  • [29] H. Massman, J.O. Rasmussen, Nucl. Phys. A 243, 155 (1975) http://dx.doi.org/10.1016/0375-9474(75)90026-3

  • [30] T. Koeling, R.A. Malfliet, Phys. Rep. C 22, 181 (1975) http://dx.doi.org/10.1016/0370-1573(75)90059-9

  • [31] K. Horie, H. Miyazaki, I. Tsutsui, Ann. Phys. 273, 267 (1999) http://dx.doi.org/10.1006/aphy.1999.5905

  • [32] K. Horie, H. Miyazaki, I. Tsutsui, Ann. Phys. 279, 104 (2000) http://dx.doi.org/10.1006/aphy.1999.5971

  • [33] C-I Um, K-H Yeon, J. Korean Phys. Soc. 41, 594 (2002)

  • [34] C-I Um, K-H Yeon, T.F. George, Phys. Rep. 362, 63 (2002) http://dx.doi.org/10.1016/S0370-1573(01)00077-1

  • [35] H. Kleinert, Path integrals in Quantum Mechanics, 4th Edition (World Scientific, Singapore, 2004)

  • [36] C. Grosche, F. Steiner, Springer Tr. Mod. Phys. 145, 1 (1998) http://dx.doi.org/10.1007/BFb0109521

  • [37] P.Y. Cai, A. Inomata, P. Wang, Phys. Lett. A 91, 331 (1982) http://dx.doi.org/10.1016/0375-9601(82)90425-X

  • [38] G. Junker, A. Inomata, Phys. Lett. A 110, 195 (1985) http://dx.doi.org/10.1016/0375-9601(85)90122-7

  • [39] J.M. Cai, P.Y. Cai, A. Inomata, In: J.Q. Liang, M.L. Wang, S.N. Qiao, D.C. Su (Eds.), ISATQP-Shanxi, 1992, Shanxi, China (Science Press, Beijing, 1993)

  • [40] U. Niederer, Helv. Phys. Acta 46, 192 (1973)

  • [41] C. Duval, G. Gibbons, A. Horváthy, Phys. Rev. D 43, 3907 (1991) http://dx.doi.org/10.1103/PhysRevD.43.3907

  • [42] C. Duval, P.A. Horváthy, L. Palla, Phys. Rev. D 50, 6658 (1994) http://dx.doi.org/10.1103/PhysRevD.50.6658

OPEN ACCESS

Journal + Issues

Search