Epitaxial graphene perfection vs. SiC substrate quality

Dominika Teklinska, Kinga Kosciewicz, Kacper Grodecki, Mateusz Tokarczyk 3 , Grzegorz Kowalski 3 , Wlodzimierz Strupinski 1 , Andrzej Olszyna 2 , and Jacek Baranowski
  • 1 Institute of Electronic Materials Technology, 133 Wolczynska Street, 01-919, Warsaw, Poland
  • 2 Faculty of Materials Science, Warsaw University of Technology, 141 Woloska Street, 02-507, Warsaw, Poland
  • 3 Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 69 Hoza Street, 00-681, Warsaw, Poland

Abstract

Polytype instability of SiC epitaxial films was the main focus of attention in the experiment performed since this factor has a decisive influence on graphene growth, which was the second stage of the experiment. Layers deposited in various initial C/Si ratios were analyzed.

Our observations indicate that the initial C/Si ratio in epitaxial growth is a crucial parameter determining which polytype will be grown, in particular for cubic (3C) or hexagonal (4H) polytypes. If the initial C/Si ratio was close to its final value, the dominant polytype was 4H. On the other hand, when the initial C/Si ratio was close to zero, 3C became the major polytype in spite of a non favourable growth temperature.

The results for graphene growth on an epi-SiC layer and a bulk substrate, in which case the dominant polytype was 4H, are also presented. These results indicate that layers on epitaxial 4H-SiC are thicker, more relaxed and have better quality in comparison with samples on 4H-SiC substrates.

Morphology and defects in SiC epilayers were analyzed using Nomarsky optical microscopy, scanning electron microscopy (SEM) and high resolution X-ray diffraction (XRD). Graphene quality was characterized by Raman spectroscopy.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] H. Tsuchida, I. Kamata, M. Nagano, J. Cryst. Growth 306, 254 (2007) http://dx.doi.org/10.1016/j.jcrysgro.2007.05.006

  • [2] T. Hori, K. Danno, T. Kimoto, J. Cryst. Growth 306, 297 (2007) http://dx.doi.org/10.1016/j.jcrysgro.2007.05.009

  • [3] S. Ha, H.J. Chung, N.T. Nuhfer, M. Skowroński, J. Cryst. Growth 262, 130 (2004) http://dx.doi.org/10.1016/j.jcrysgro.2003.09.054

  • [4] A.R. Verma, P. Krishna, Polymorphism and polytypism in crystals, Monographs in Crystallography (Wiley, New York, 1966)

  • [5] C.D. Lee, R.M. Feenstra, O. Shigiltchoff, R.P. Devaty, W.J. Choyke, Mater. Res. Soc. Symp. P. 693, I3.40.1 (2002) http://dx.doi.org/10.1557/PROC-693-I3.40.1

  • [6] W. Strupinski, K. Kosciewicz, J. Weyher, A. Olszyna, Mater. Sci. Forum 600–603, 155 (2009) http://dx.doi.org/10.4028/www.scientific.net/MSF.600-603.155

  • [7] W. Strupinski et al., Mater. Sci. Forum 615–617, 109 (2009)

  • [8] S.A. Sakwe, R. Muller, P.J. Wellmann, J. Cryst. Growth 289, 520 (2006) http://dx.doi.org/10.1016/j.jcrysgro.2005.11.096

  • [9] D. Zhuang, J.H. Edgar, Mat. Sci. Eng. R 48, 1 (2005) http://dx.doi.org/10.1016/j.mser.2004.11.002

  • [10] K. Kosciewicz, W. Strupinski, W. Wierzchowski, K. Wieteska, A. Olszyna, Mater. Sci. Forum 645–648, 251 (2010) http://dx.doi.org/10.4028/www.scientific.net/MSF.645-648.251

  • [11] C. Faugeras et al., Appl. Phys. Lett. 92, 011914 (2008) http://dx.doi.org/10.1063/1.2828975

  • [12] N. Camara et al., Phys. Rev. B 80, 125410 (2009) http://dx.doi.org/10.1103/PhysRevB.80.125410

  • [13] T. Yu et al., J. Phys. Chem. C 112, 12602 (2008) http://dx.doi.org/10.1021/jp806045u

  • [14] A. Drabińska et al., Phys. Rev B 81, 245410 (2010) http://dx.doi.org/10.1103/PhysRevB.81.245410

  • [15] J.P. Bergman, H. Lendenmann, P.A. Nilsson, U. Lin-defelt, P. Skytt, Mater. Sci. Forum 299, 353 (2001)

  • [16] D. Su Lee et al., Nano Lett. 8, 4320 (2008) http://dx.doi.org/10.1021/nl802156w

OPEN ACCESS

Journal + Issues

Search