3D quantum mechanical simulation of square nanowire MOSFETs by using NEGF method

Esmaeil Dastjerdy 1 , Rahim Ghayour 1 , and Hojjat Sarvari 1
  • 1 School of Electrical and Computer Engineering, Shiraz University, Shiraz, Iran


In order to investigate the specifications of nanoscale transistors, we have used a three dimensional (3D) quantum mechanical approach to simulate square cross section silicon nanowire (SNW) MOSFETs. A three dimensional simulation of silicon nanowire MOSFET based on self consistent solution of Poisson-Schrödinger equations is implemented. The quantum mechanical transport model of this work uses the non-equilibrium Green’s function (NEGF) formalism. First, we simulate a double-gate (DG) silicon nanowire MOSFET and compare the results with those obtained from nanoMOS simulation. We understand that when the transverse dimension of a DG nanowire is reduced to a few nanometers, quantum confinement in that direction becomes important and 3D Schrödinger equation must be solved. Second, we simulate gate-all-around (GAA) silicon nanowire MOSFETs with different shapes of gate. We have investigated GAA-SNW-MOSFET with an octagonal gate around the wire and found out it is more suitable than a conventional GAA MOSFET for its more I on/I off, less Drain-Induced-Barrier-Lowering (DIBL) and less subthreshold slope.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] J. Wang, E. Polizzi, M. Lundstrom, In: M. Foisy (Ed.), IEEE International Electron Devices Meeting, 8–10 Dec. 2003, Washington DC, USA (IEEE, University of Louisiana, 2003) 695

  • [2] M. Pakkhesal, R. Ghayour, Cent. Eur. J. Phys. 6, 4 (2008) http://dx.doi.org/10.2478/s11534-008-0108-z

  • [3] J. Wang, PhD thesis, Purdue University (West Lafayette, USA, 2005)

  • [4] S. Datta, Quantum Transport, Atom to Transistor (Cambridge University Press, UK, 2005)

  • [5] O. Kurniawan, P. Bai, E. Li, J. Phys. D: Appl. Phys. 42, 105109 (2009) http://dx.doi.org/10.1088/0022-3727/42/10/105109

  • [6] A. L. Miguel et al., Time-dependent density functional theory (Springer Verlag, Berlin, Heidelberg, 2006)

  • [7] M. Luisier, A. Schenk, W. Fichtner, In: K. Mistry (Ed.), IEEE International Electron Devices Meeting, 11–13 Dec. 2006, San Francisco, CA, USA (IEEE, CA, 2006) 1

  • [8] J. Wang, A. Rahman, A. Ghosh, G. Klimeck, M. Lundstrom, IEEE Trans. Electron Devices 52, 1589 (2005) http://dx.doi.org/10.1109/TED.2005.850945

  • [9] M. Shin, Math. Comput. Simul. 79, 1060 (2008) http://dx.doi.org/10.1016/j.matcom.2007.10.007

  • [10] M. Luisier, A. Schenk, W. Fichtner, J. Appl. Phys. 100, 043713 (2006) http://dx.doi.org/10.1063/1.2244522

  • [11] M. Shin, J. Appl. Phys. 101, 024510 (2007) http://dx.doi.org/10.1063/1.2430786

  • [12] M. Bescond et al., In: J. Welser (Ed.), IEEE Inter- national Electron Devices Meeting, 13–15 Dec. 2004, SanFrancisco, CA, USA (IEEE, CA, 2004) 617

  • [13] J. Wang, E. Polizzi, M. Landstrom, J. Appl. Phys. 96, 2192 (2004) http://dx.doi.org/10.1063/1.1769089

  • [14] S. R. Mehrotra, K. P. Roenker, In: N. Ramaswamy (Ed.), Microelectronics and Electron Devices, 20Apr. 2007, Boise, ID, USA (IEEE, ID, 2007) 40 http://dx.doi.org/10.1109/WMED.2007.368055

  • [15] M. Shin, IEEE Trans. Electron Devices 55, 737 (2008) http://dx.doi.org/10.1109/TED.2008.916149

  • [16] J. Wang, E. Polizzi, A. Ghosh, S. Datta, M. Lundstrom, Appl. Phys. Lett. 87, 043101 (2005) http://dx.doi.org/10.1063/1.2001158

  • [17] Z. Ren, R. Venugopal, S. Goasguen, S. Datta, M. Lundstrom, IEEE Trans. Electron Devices 50, 1914 (2003) http://dx.doi.org/10.1109/TED.2003.816524

  • [18] R. Kim, M. Lundstrom, arXiv:0811. 0116v3

  • [19] E. Gnani, S. Reggiani, M. Rudan, G. Baccarani, IEEE Trans. Nanotechnol. 6, 90 (2007) http://dx.doi.org/10.1109/TNANO.2006.888547


Journal + Issues