Photoluminescence and photocatalytic activity of zinc tungstate powders

Larisa Gigorjeva 1 , Donats Millers 1 , Jānis Grabis 2 , and Dzidra Jankoviča
  • 1 Institute of Solid State Physic, University of Latvia, 8 Kengaraga, LV-1063, Riga, Latvia
  • 2 Institute of Inorganic Chemistry Physics, RTU, Miera 34, LV-2169, Salaspils, Latvia

Abstract

ZnWO4 powders with grain size in range 20 nm–10 µm have been synthesized by a simple combustion method and subsequent calcinations. The photocatalytic activities of powders were tested by degradation of methylene blue solution under UV light. The luminescence spectra and luminescence decay kinetics were studied and luminescence decay time dependence on average powder-grain size was obtained. The correlation between self-trapped exciton luminescence decay time and photocatalytic activity of ZnWO4 powders was shown. A model explaining the excitonic luminescence decay time correlation with photocatalytic activity was proposed.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] S. Chernov, L. Grigorjeva, D. Millers, A. Watterich, Phys. Status Solidi B 241, 1945 (2004) http://dx.doi.org/10.1002/pssb.200302015

  • [2] M. Itoh, T. Katagiri, T. Aoki, M. Fujita, Radiat. Meas. 42, 545 (2007) http://dx.doi.org/10.1016/j.radmeas.2007.01.049

  • [3] M. Grazel, Nature 414, 338 (2001) http://dx.doi.org/10.1038/35104607

  • [4] Q. Xiang et al., Journal of the Chinese Ceramic Society 36, 1304 (2008)

  • [5] H. Fu, J. Lin, L. Zhang, Y. Zhu, Appl. Catal. A-Gen. 306, 58 (2006) http://dx.doi.org/10.1016/j.apcata.2006.03.040

  • [6] G. Huang, Y. Zhu, Mater. Sci. Eng. B 139, 201 (2007) http://dx.doi.org/10.1016/j.mseb.2007.02.009

  • [7] A. Kalinko, A. Kuzmin, J. Lumin. 129, 1144 (2009) http://dx.doi.org/10.1016/j.jlumin.2009.05.010

  • [8] G. Huang, C. Zhang, Y. Zhu, J. Alloys Compd. 432, 269 (2007) http://dx.doi.org/10.1016/j.jallcom.2006.05.109

  • [9] F.-S. Wen et al., Mater. Lett. 55, 152 (2002) http://dx.doi.org/10.1016/S0167-577X(01)00638-3

  • [10] S. Ram, L. Gao, Chem. Lett. 35, 1312 (2006) http://dx.doi.org/10.1246/cl.2006.1312

  • [11] A. Dodd, A. McKinley, T. Tsuzuki, M. Sounders, J. Eur. Ceram. Soc. 29, 139 (2009) http://dx.doi.org/10.1016/j.jeurceramsoc.2008.05.027

  • [12] M.W. Blair et al., J. Lumin. 130, 825 (2010) http://dx.doi.org/10.1016/j.jlumin.2009.12.008

  • [13] G. Bhashar Kumar, K. Sivaiah, S. Buddhudu, Ceram. Int. 36, 199 (2010) http://dx.doi.org/10.1016/j.ceramint.2009.07.005

  • [14] P. Lesne, P. Caillet, Can. J. Spectrosc. 18, 69 (1973)

  • [15] R.-P. Jia et al., Mater. Lett. 61, 1793 (2007) http://dx.doi.org/10.1016/j.matlet.2006.07.134

  • [16] V. Pankratov, L. Grigorjeva, D. Millers, T. Chudoba, Radiat. Meas. 42, 679 (2007) http://dx.doi.org/10.1016/j.radmeas.2007.02.046

  • [17] K. Smits, L. Grigorjeva, D. Millers, J. Fidelus, W. Lojkowski, IEEE Trans. Nucl. Sci. 55, 1523 (2008) http://dx.doi.org/10.1109/TNS.2008.924077

  • [18] R. Pazik et al., J. Alloys Compd. 451, 557 (2008) http://dx.doi.org/10.1016/j.jallcom.2007.04.232

OPEN ACCESS

Journal + Issues

Search