Generation of vorticity motion by sound in a chemically reacting gas and inversion of acoustic streaming in the non-equilibrium regime

Anna Perelomova 1  and Paweł Wojda 1
  • 1 Faculty of Applied Physics and Mathematics, Gdansk University of Technology, ul. Narutowicza 11/12, 80-233, Gdansk, Poland

Abstract

Nonlinear stimulation of the vorticity mode caused by losses in the momentum of sound in a chemically reacting gas is considered. The instantaneous dynamic equation for the vorticity mode is derived. It includes a quadratic nonlinear acoustic source, which reflects the fact that the reason for the interaction between sound and the vorticity mode is nonlinear. Both periodic and aperiodic sound may be considered as the origin of the vorticity flow. The equation governing the mean flow (the acoustic streaming) in the field of periodic sound is also derived. In the non-equilibrium regime of a chemical reaction, there may exist streaming vortices whose direction of rotation is opposite to that of the vortices in the standard thermoviscous flows. For periodic sound, this is illustrated by an example. The theory and the example describe both equilibrium and non-equilibrium chemical reactions.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] M.J. Lighthill, J. Sound. Vib. 61, 391 (1978) http://dx.doi.org/10.1016/0022-460X(78)90388-7

  • [2] O.V. Rudenko, S.I. Soluyan, Theoretical foundations of nonlinear acoustics, Plenum, New York (1977)

  • [3] W.L. Nyborg, In: M. Hamilton, D. Blackstock (Eds.), Nonlinear Acoustics (Academic Press, New York, 1998) 207

  • [4] Ya.B. Zeldovich, Yu.P. Raizer, Physics of shock waves and high temperature hydrodynamic phenomena (Academic Press, New York, 1966)

  • [5] A.I. Osipov, A.V. Uvarov, Sov. Phys. Uspekhi 35, 903 (1992) http://dx.doi.org/10.1070/PU1992v035n11ABEH002275

  • [6] J.F. Clarke, M. McChesney, The dynamics of real gases (Butterworths, London, 1964)

  • [7] N.E. Molevich, Acoust. Phys.+ 48, 209 (2002) http://dx.doi.org/10.1134/1.1460958

  • [8] S. Makarov, M. Ochmann, Acustica 82, 579 (1996)

  • [9] Q. Qi, J. Acoust. Soc. Am. 94, 1090 (1993) http://dx.doi.org/10.1121/1.406956

  • [10] L. Menguy, J. Gilbert, Acustica 86, 249 (2000)

  • [11] G.E. Abouseif, T.-Y. Toong, Symposium (International) on Combustion 17, 1341 (1979) http://dx.doi.org/10.1016/S0082-0784(79)80126-5

  • [12] N.E. Molevich, Acoust. Phys.+ 49, 229 (2003)

  • [13] A. Perelomova, Acta Acust. 89, 754 (2003)

  • [14] A. Perelomova, Phys. Lett. A 357, 42 (2006) http://dx.doi.org/10.1016/j.physleta.2006.04.014

  • [15] A. Perelomova, Can. J. Phys. 88, 293 (2010) http://dx.doi.org/10.1139/P10-011

  • [16] E.V. Koltsova, A.I. Osipov, A.V. Uvarov, Sov. Phys. Acoust.+, 40, 969 (1994)

  • [17] N.E. Molevich, Acoust. Phys.+ 47, 102 (2001) http://dx.doi.org/10.1134/1.1340086

OPEN ACCESS

Journal + Issues

Search