Integrability of coupled KdV equations

Abdul-Majid Wazwaz 1
  • 1 Department of Mathematics, Saint Xavier University, Chicago, IL, 60655, USA

Abstract

The integrability of coupled KdV equations is examined. The simplified form of Hirota’s bilinear method is used to achieve this goal. Multiple-soliton solutions and multiple singular soliton solutions are formally derived for each coupled KdV equation. The resonance phenomenon of each model will be examined.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] D.-S. Wang, Appl. Math. Comput., DOI:10.1016/j.amc.2010.02.030

  • [2] C.-X. Li, J. Phys. Soc. Jpn. 73, 327 (2004) http://dx.doi.org/10.1143/JPSJ.73.327

  • [3] R. Hirota, M. Ito, J. Phys. Soc. Jpn. 52, 744 (1983) http://dx.doi.org/10.1143/JPSJ.52.744

  • [4] M. Ito, J. Phys. Soc. Jpn. 49, 771 (1980) http://dx.doi.org/10.1143/JPSJ.49.771

  • [5] R. Hirota, The Direct Method in Soliton Theory (Cambridge University Press, Cambridge, 2004) http://dx.doi.org/10.1017/CBO9780511543043

  • [6] R. Hirota, Phys. Rev. Lett. 27, 1192 (1971) http://dx.doi.org/10.1103/PhysRevLett.27.1192

  • [7] J. Hietarinta, J. Math. Phys. 28, 1732 (1987) http://dx.doi.org/10.1063/1.527815

  • [8] J. Hietarinta, J. Math. Phys. 28, 2094 (1987) http://dx.doi.org/10.1063/1.527421

  • [9] W. Hereman, A. Nuseir, Math. Comput. Simulat. 43, 13 (1997) http://dx.doi.org/10.1016/S0378-4754(96)00053-5

  • [10] A. Biswas, Phys. Lett. A 372, 4061 (2008)

  • [11] A. Biswas, Commun. Nonlinear Sci. 14, 2524 (2009) http://dx.doi.org/10.1016/j.cnsns.2008.09.023

  • [12] M. Dehghan, A. Shokri, Math. Comput. Simulat. 79, 700 (2008) http://dx.doi.org/10.1016/j.matcom.2008.04.018

  • [13] A.M. Wazwaz, Commun. Nonlinear Sci. 14, 2962 (2009) http://dx.doi.org/10.1016/j.cnsns.2008.12.018

  • [14] A.M. Wazwaz, Phys. Lett. A 373, 2927 (2009) http://dx.doi.org/10.1016/j.physleta.2009.06.026

  • [15] A.M. Wazwaz, Partial Differential Equations and Solitary Waves Theory (HEP and Springer, Peking and Berlin, 2009) http://dx.doi.org/10.1007/978-3-642-00251-9

  • [16] A.M. Wazwaz, Appl. Math. Comput. 190, 633 (2007) http://dx.doi.org/10.1016/j.amc.2007.01.056

  • [17] A.M. Wazwaz, Appl. Math. Comput. 190, 1198 (2007) http://dx.doi.org/10.1016/j.amc.2007.02.003

  • [18] A.M. Wazwaz, Commun. Nonlinear Sci. 12, 1395 (2007) http://dx.doi.org/10.1016/j.cnsns.2005.11.007

  • [19] A.M. Wazwaz, Appl. Math. Comput. 192, 479 (2007) http://dx.doi.org/10.1016/j.amc.2007.03.023

  • [20] A.M. Wazwaz, Appl. Math. Comput. 199, 133 (2008) http://dx.doi.org/10.1016/j.amc.2007.09.034

  • [21] A.M. Wazwaz, Appl. Math. Comput. 200, 437 (2008) http://dx.doi.org/10.1016/j.amc.2007.11.032

  • [22] A.M. Wazwaz, Appl. Math. Comput. 201, 168 (2008) http://dx.doi.org/10.1016/j.amc.2007.12.009

  • [23] A.M. Wazwaz, Appl. Math. Comput. 201, 489 (2008) http://dx.doi.org/10.1016/j.amc.2007.12.037

  • [24] A.M. Wazwaz, Appl. Math. Comput. 201, 790 (2008) http://dx.doi.org/10.1016/j.amc.2008.01.017

  • [25] A.M. Wazwaz, Appl. Math. Comput. 202, 275 (2008) http://dx.doi.org/10.1016/j.amc.2008.02.013

  • [26] A.M. Wazwaz, Nonlinear Science Letters A 1, 289 (2010)

  • [27] K.W. Chow, L.P. Yip, D. Gurarie, Int. J. Nonlin. Sci. Num. 10, 935 (2009) http://dx.doi.org/10.1515/IJNSNS.2009.10.7.935

  • [28] C. Rogers, L.P. Yip, K.W. Chow, Int. J. Nonlin. Sci. Num. 10, 397 (2009) http://dx.doi.org/10.1515/IJNSNS.2009.10.3.397

  • [29] H.M. Fu, Z.D. Dai, Int. J. Nonlin. Sci. Num. 10, 927 (2009) http://dx.doi.org/10.1515/IJNSNS.2009.10.7.927

  • [30] Z.D. Dai, C.-J. Wang, S.-Q. Lin, D.-L. Li, G. Mu, Nonlinear Science Letters A 1, 77 (2010)

  • [31] M.A. Abdou, E.M. Abulwafa, Nonlinear Science Letters A 1, 373 (2010)

  • [32] R. Mokhtari, M. Mohammadi, Int. J. Nonlin. Sci. Num. 10, 779 (2009) http://dx.doi.org/10.1515/IJNSNS.2009.10.6.779

OPEN ACCESS

Journal + Issues

Search