Effect of cytoskeletal element degradation on merging of concentration waves in slow axonal transport

Andrey Kuznetsov 1 , Andriy Avramenko 2  and Dmitry Blinov 2
  • 1 Dept. of Mechanical and Aerospace Engineering, North Carolina State University, Campus Box 7910, Raleigh, NC, 27695-7910, USA
  • 2 Institute of Engineering Thermophysics, National Academy of Sciences, Kiev, Ukraine

Abstract

The aim of this paper is to investigate, by means of a numerical simulation, the effect of the half-life of cytoskeletal elements (CEs) on superposition of several waves representing concentrations of running, pausing, and off-track anterograde and retrograde CE populations. The waves can be induced by simultaneous microinjections of radiolabeled CEs in different locations in the vicinity of a neuron body; alternatively, the waves can be induced by microinjecting CEs at the same location several times, with a time interval between the injections. Since the waves spread out as they propagate downstream, unless their amplitude decreases too fast, they eventually superimpose. As a result of superposition and merging of several waves, for the case with a large half-life of CEs, a single wave is formed. For the case with a small half-life the waves vanish before they have enough time to merge.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] S. Sasaki, H. Warita, K. Abe, M. Iwata, Acta Neuropathol. 110, 48 (2005) http://dx.doi.org/10.1007/s00401-005-1021-9

  • [2] J.P. Julien, Cell104, 581 (2001) http://dx.doi.org/10.1016/S0092-8674(01)00244-6

  • [3] A. Brown, Nat. Rev. Mol. CellBiol. 1, 153 (2000) http://dx.doi.org/10.1038/35040102

  • [4] R.B. Vallee, G.S. Bloom, Annu. Rev. Neurosci. 14, 59 (1991) http://dx.doi.org/10.1146/annurev.ne.14.030191.000423

  • [5] S. Roy et al., J. Neurosci. 27, 3131 (2007) http://dx.doi.org/10.1523/JNEUROSCI.4999-06.2007

  • [6] A. Brown, L. Wang, P. Jung, Mol. Biol. Cell 16, 4243 (2005) http://dx.doi.org/10.1091/mbc.E05-02-0141

  • [7] G. Craciun, A. Brown, A. Friedman, J. Theor. Biol. 237, 316 (2005) http://dx.doi.org/10.1016/j.jtbi.2005.04.018

  • [8] N. Trivedi, P. Jung, A. Brown, J. Neurosci. 27, 507 (2007) http://dx.doi.org/10.1523/JNEUROSCI.4227-06.2007

  • [9] Y. He et al., J. CellBiol. 168, 697 (2005) http://dx.doi.org/10.1083/jcb.200407191

  • [10] J.V. Shah, L.A. Flanagan, P.A. Janmey, J.F. Leterrier, Mol. Biol. Cell 11, 3495 (2000)

  • [11] O.I. Wagner et al., Mol. Biol. Cell 15, 5092 (2004) http://dx.doi.org/10.1091/mbc.E04-05-0401

  • [12] J.T. Yabe, A. Pimenta, T.B. Shea, J. Cell Sci. 112, 3799 (1999)

  • [13] C.W. Jung et al., Mol. Brain. Res. 141, 151 (2005) http://dx.doi.org/10.1016/j.molbrainres.2005.08.009

  • [14] J. Niclas, F. Navone, N. Hombooher, R.D. Vale, Neuron 12, 1059 (1994) http://dx.doi.org/10.1016/0896-6273(94)90314-X

  • [15] C.H. Xia, A. Rahman, Z.H. Yang, L.S.B. Goldstein, Genomics 52, 209 (1998) http://dx.doi.org/10.1006/geno.1998.5427

  • [16] F. Navone et al., J. Cell Biol. 117, 1263 (1992) http://dx.doi.org/10.1083/jcb.117.6.1263

  • [17] A. Uchida, N.H. Alami, A. Brown, Mol. Biol. Cell 20, 4997 (2009) http://dx.doi.org/10.1091/mbc.E09-04-0304

  • [18] C.S. Mitchell, R.H. Lee, J. Theor. Biol. 257, 430 (2009) http://dx.doi.org/10.1016/j.jtbi.2008.12.011

  • [19] P. Jung, A. Brown, Phys. Biol. 6, 046002 (2009) http://dx.doi.org/10.1088/1478-3975/6/4/046002

  • [20] A.V. Kuznetsov, A.A. Avramenko, D.G. Blinov, International Journal for Numerical Methods in Biomedical Engineering, DOI:10.1002/cnm.1417 (in press)

  • [21] S. Millecamps et al., J. Neurosci. 27, 4947 (2007) http://dx.doi.org/10.1523/JNEUROSCI.5299-06.2007

  • [22] A.V. Kuznetsov, A.A. Avramenko, D.G. Blinov, Int. Com- mun. Heat Mass Transfer 36, 641 (2009) http://dx.doi.org/10.1016/j.icheatmasstransfer.2009.04.002

  • [23] A. Yuan et al., J. Neurosci. 29, 11316 (2009) http://dx.doi.org/10.1523/JNEUROSCI.1942-09.2009

  • [24] M.V. Rao et al., J. Cell Biol. 159, 279 (2002) http://dx.doi.org/10.1083/jcb.200205062

  • [25] A. Friedman, B. Hu, Arch. Ration. Mech. Anal. 186, 251 (2007) http://dx.doi.org/10.1007/s00205-007-0069-1

  • [26] J.A. Galbraith, T.S. Reese, M.L. Schlief, P.E. Gallant, Proc. Nat. Acad. Sci. U.S.A. 96, 11589 (1999) http://dx.doi.org/10.1073/pnas.96.20.11589

  • [27] B.P. Graham, K. Lauchlan, D.R. Mclean, J. Comput. Neurosci. 20, 43 (2006) http://dx.doi.org/10.1007/s10827-006-5330-3

  • [28] J. Alvarez, A. Giuditta, E. Koenig, Prog. Neurobiol. 62, 1 (2000) http://dx.doi.org/10.1016/S0301-0082(99)00062-3

  • [29] K.E. Miller, D.C. Samuels, J. Theor. Biol. 186, 373 (1997) http://dx.doi.org/10.1006/jtbi.1996.0355

  • [30] R.A. Nixon, K.B. Logvinenko, J. Cell Biol. 102, 647 (1986) http://dx.doi.org/10.1083/jcb.102.2.647

OPEN ACCESS

Journal + Issues

Open Physics (former Central European Journal of Physics) is a peer-reviewed Open Access journal, devoted to the publication of fundamental research results in all fields of physics.

Search