Nonlinear dispersion of a pollutant ejected into a channel flow

Robert Gorder 1  and Kuppalapalle Vajravelu 1
  • 1 Department of Mathematics, University of Central Florida, Orlando, FL, 32816, USA


In this paper, we study the nonlinear coupled boundary value problem arising from the nonlinear dispersion of a pollutant ejected by an external source into a channel flow. We obtain exact solutions for the steady flow for some special cases and an implicit exact solution for the unsteady flow. Additionally, we obtain analytical solutions for the transient flow. From the obtained solutions, we are able to deduce the qualitative influence of the model parameters on the solutions. Furthermore, we are able to give both exact and analytical expressions for the skin friction and wall mass transfer rate as functions of the model parameters. The model considered can be useful for understanding the polluting situations of an improper discharge incident and evaluating the effects of decontaminating measures for the water bodies.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] R.B. Bird, W.E. Stewart, E.N. Lightfoot, Transport Phenomena (Wiley, New York, 1960)

  • [2] G.I. Taylor, P. R. Soc. London 233, 446 (1954)

  • [3] P. Shulka, J. Hydraul. Eng.-ASCE 129, 866 (2002)

  • [4] C. Zheng, G.D. Bennett, Applied Contaminant Transport Modelling: Theory and Practices (Van Nostrand Reinhold, New York, 1995)

  • [5] P. Dulal, S. Khan, Int. J. Environ. Stud. 35, 197 (1990)

  • [6] M. Summerfield, W. Krebs, Part. Part. Syst. Char. 7, 16 (1990)

  • [7] J.F. Sini, S. Anquetin, P.G. Mestayer, Atmos. Environ. B-Urb. 30, 2659 (1996)

  • [8] O.D. Makinde, R.J. Moitsheki, B.A. Tau, Appl. Math. Comput. 188, 1267 (2007)

  • [9] R.J. Moitsheki, O.D. Makinde, Nonlinear Anal.-Real 10, 3420 (2009)

  • [10] T. Chinyoka, O.D. Makinde, Math. Probl. Eng. 2010, 827363 (2010)

  • [11] M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Dover Publications Inc., New York, 1992)

  • [12] U. Ascher, R. Mattheij, R. Russell, Numerical Solution of Boundary Value Problems for Ordinary Differential Equations, SIAM Classics in Applied Mathematics vol. 13 (Society for Industrial and Applied Mathematics, 1995)

  • [13] U. Ascher, L. Petzold, Computer Methods for Ordinary Differential Equations and differential-Algebraic Equations (SIAM, Philadelphia, 1998)


Journal + Issues