Modification of the amorphous carbon films by the ns-laser irradiation

Alfonsas Grigonis 1 , Liutauras Marcinauskas, Vinga Vinciunaite 1 , and Gediminas Raciukaitis 3
  • 1 Physics department, Kaunas University of Technology, Studentu st. 50, LT-51368, Kaunas, Lithuania
  • 2 Plasma Processing Laboratory, Lithuanian Energy Institute, Breslaujos st. 3, LT-44403, Kaunas, Lithuania
  • 3 Center for Physical Sciences and Technology, Savanoriu Ave. 231, LT-02300, Vilnius, Lithuania

Abstract

The effect of a nanosecond laser irradiation of thin (60 and 145 nm) amorphous, diamond-like carbon films deposited on Si substrate by an ion beam deposition (IBD) from pure acetylene and acetylene/hydrogen (1:2) gas mixture was analyzed in this work. The films were irradiated with the infrared (IR) and ultraviolet (UV) radiation of the nanosecond Nd:YAG lasers working at the first (1.16 eV) and the third (3.48 eV) harmonics, using a multi-shot regime. The IR laser irradiation stimulated a minor increase in the fraction of sp2 bonds, causing a slight decrease in the hardness of the films and initiated SiC formation. Irradiation with the UV laser caused the formation of carbides and increased hydrogenization of the Si substrate and the fraction of sp2 sites. Spalliation and ablation were observed at a higher energy density and with a large number of laser pulses per spot.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] K.P. Chu, L. Li, Mater. Chem. Phys. 96, 253 (2006) http://dx.doi.org/10.1016/j.matchemphys.2005.07.048

  • [2] J. Robertson, Mater. Sci. Eng. R37, 129 (2002)

  • [3] M.G. Beghi et al., Appl. Phys. Lett. 81, 3804 (2002) http://dx.doi.org/10.1063/1.1510179

  • [4] T.V. Kononenko et al., Appl. Surf. Sci. 86, 234 (1995) http://dx.doi.org/10.1016/0169-4332(94)00417-X

  • [5] T.V. Kononenko et al., Diam. Relat. Mater. 14, 1368 (2005) http://dx.doi.org/10.1016/j.diamond.2005.02.009

  • [6] S.K. Sundaram, E. Mazur, Nat. Mater. 1, 217 (2002) http://dx.doi.org/10.1038/nmat767

  • [7] R. Le Harzic et al., Appl. Phys. Lett. 80, 3886 (2002) http://dx.doi.org/10.1063/1.1481195

  • [8] G. Daminelli, S. Pentzien, A. Hertwig, J. Kruger, Appl. Phys. A-Mater. 83, 89 (2006) http://dx.doi.org/10.1007/s00339-005-3460-5

  • [9] E. Cappelli, C. Scilletta, S. Orlando, V. Valentini, M. Servidori, Appl. Surf. Sci. 255, 5620 (2009) http://dx.doi.org/10.1016/j.apsusc.2008.10.062

  • [10] L.H. Zang, J.P. Wang, H. Gong, J. Phys.-Condens. Mat. 13, 2989 (2001) http://dx.doi.org/10.1088/0953-8984/13/13/312

  • [11] A. Grigonis, Z. Rutkunienė, A. Medvids, Vacuum 82, 1212 (2008) http://dx.doi.org/10.1016/j.vacuum.2008.02.001

  • [12] C. Malagu, V. Guidi, M.C. Carotta, G. Martinelli, Appl. Phys. Lett. 84, 4158 (2004) http://dx.doi.org/10.1063/1.1755419

  • [13] D. Vouagner, C. Beleznai, J.P. Girardeau-Montaut, C. Templier, H. Gonnord, Appl. Surf. Sci. 201, 154 (2000)

  • [14] A. Grigonis, A. Medvid, P. Onufrijevs, J. Babonas, A. Rėza, Opt. Mater. 30, 749 (2008) http://dx.doi.org/10.1016/j.optmat.2007.02.027

  • [15] M. Silinskas, A. Grigonis, V. Kulikauskas, I. Manika, Thin Solid Films 516, 1683 (2008) http://dx.doi.org/10.1016/j.tsf.2007.05.015

  • [16] M. Silinskas, A. Grigonis, Diam. Relat. Mater. 11, 1026 (2002) http://dx.doi.org/10.1016/S0925-9635(01)00734-8

  • [17] W. Wei, Vacuum 81, 857 (2007) http://dx.doi.org/10.1016/j.vacuum.2006.10.005

  • [18] J. Keczkowska, Cent. Eur. J. Phys. DOI: 10.2478/s11534-010-0090-0

  • [19] L. Marcinauskas, A. Grigonis, V. Valinčius, J. Non-Cryst. Solids 355, 1240 (2009) http://dx.doi.org/10.1016/j.jnoncrysol.2009.05.009

  • [20] J. Ristein, R.T. Stief, L Ley, W. Beyer, J. Appl. Phys. 84, 3836 (1998) http://dx.doi.org/10.1063/1.368563

OPEN ACCESS

Journal + Issues

Search