Computing Networks: A General Framework to Contrast Neural and Swarm Cognitions

Carlos Gershenson 1
  • 1 Computer Sciences Department Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas Universidad Nacional Autónoma de Mexico Ciudad Universitaria, A.P. 20-726 01000 Mexico D.F. Mexico


This paper presents the Computing Networks (CNs) framework. CNs are used to generalize neural and swarm architectures. Artificial neural networks, ant colony optimization, particle swarm optimization, and realistic biological models are used as examples of instantiations of CNs. The description of these architectures as CNs allows their comparison. Their differences and similarities allow the identification of properties that enable neural and swarm architectures to perform complex computations and exhibit complex cognitive abilities. In this context, the most relevant characteristics of CNs are the existence multiple dynamical and functional scales. The relationship between multiple dynamical and functional scales with adaptation, cognition (of brains and swarms) and computation is discussed.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] B. Hölldobler, and E. O. Wilson, The Ants. Belknap Press, 1990.

  • [2] S. Aron, J. L. Deneubourg, S. Goss, and J.M. Pasteels, Functional self-organization illustrated by inter-nest traffic in ants: The case of the argentinian ant. In W. Alt and G. Hoffman, Eds., Biological Motion, volume 89 of Lecture Notes in BioMathematics, 533-547. Springer, Berlin, 1990.

  • [3] Z. Reznikova, Animal Intelligence From Individual to Social Cognition. Cambridge University Press, 2007.

  • [4] B. Ryabko, and Z. Reznikova, The use of ideas of information theory for studying ”language” and intelligence in ants. Entropy, 11(4), 836-853, 2009.

  • [5] E. Bonabeau, M. Dorigo, and G. Theraulaz, Swarm Intelligence: From Natural to Artificial Systems. Santa Fe Institute Studies in the Sciences of Complexity. Oxford University Press, New York, 1999.

  • [6] M. Dorigo, and T. Stützle, Ant Colony Optimization. MIT Press, July 2004.

  • [7] M. Dorigo, V. Trianni, E. Sahin, R. Groß, T. H. Labella, G. Baldassarre, S. Nolfi, J.-L. Deneubourg, F. Mondada, D. Floreano, and L. Gambardella. Evolving self-organizing behaviors for a swarm-bot. Autonomous Robots, 17(2-3), 223-245, 2004.

  • [8] D. R. Chialvo, and M. M. Millonas, How swarms build cognitive maps. In L. Steels, Ed., The biology and technology of intelligent autonomous agents, volume 144, 439-450, 1995.

  • [9] I. D. Couzin, Collective cognition in animal groups. Trends in Cognitive Sciences, 13(1), 36-43, 2009.

  • [10] J. A. R. Marshall, R. Bogacz, A. Dornhaus, R. Planqué, T. Kovacs, and N. R Franks, On optimal decision-making in brains and social insect colonies. Journal of the Royal Society Interface, 2009.

  • [11] K. M. Passino, T. D. Seeley, and P. Kirk Visscher, Swarm cognition in honey bees. Behavioral Ecology and Sociobiology, 62(3), 401-414, January 2008.

  • [12] V. Trianni and E. Tuci, Swarm cognition and artificial life. In Advances in Artificial Life. Proceedings of the 10th European Conference on Artificial Life (ECAL 2009), 2009.

  • [13] M. E. J. Newman, The structure and function of complex networks. SIAM Review, 45, 167-256, 2003.

  • [14] M. Newman, A. Barabási, and D. J. Watts, Eds., The Structure and Dynamics of Networks. Princeton Studies in Complexity. Princeton University Press, 2006.

  • [15] D. E. Rumelhart, J. L. McClelland, and the PDP Research Group, Eds. Parallel Distributed Processing: Explorations in the Microstructure of Cognition. MIT Press, 1986.

  • [16] J. J. Hopfield, Artificial neural networks. Circuits and DevicesMagazine, IEEE, 4(5), 3-10, 1988.

  • [17] M. Dorigo, V. Maniezzo, and A. Colorni, Positive feedback as a search strategy. Technical Report 91-016, Dipartimento di Elettronica, Politecnico di Milano, 1991.

  • [18] M. Dorigo and C. Blum, Ant colony optimization theory: A survey. Theoretical Computer Science, 44(2-3), 243-278, 2005.

  • [19] M. Dorigo, Ant colony optimization. Scholarpedia, 2(3), 1461, 2007.

  • [20] J. Kennedy and R. Eberhart, Particle swarm optimization. In Proceedings of IEEE International Conference on Neural Networks, 1942-1948, Piscataway, NJ, 1995. IEEE Press.

  • [21] J. Kennedy and R. Eberhart, Swarm Intelligence. Morgan Kaufmann, San Francisco, CA, 2001.

  • [22] M. Dorigo, M. A. Montes de Oca, and A. Engelbrecht, Particle swarm optimization. Scholarpedia, 3(11), 1486, 2008.

  • [23] C. Gershenson. Classification of random Boolean networks. In R. K. Standish, M. A. Bedau, and H. A. Abbass, editors, Artificial Life VIII: Proceedings of the Eight International Conference on Artificial Life, 1-8. MIT Press, 2002.

  • [24] C. Gershenson, Updating schemes in random Boolean networks: Do they really matter? In J. Pollack, M. Bedau, P. Husbands, T. Ikegami, and R. A. Watson, Eds., Artificial Life IX Proceedings of the Ninth International Conference on the Simulation and Synthesis of Living Systems, 238-243. MIT Press, 2004.

  • [25] A. Wuensche, Discrete dynamical networks and their attractor basins. In R. Standish, B. Henry, S. Watt, R. Marks, R. Stocker, D. Green, S. Keen, and T. Bossomaier, Eds., Complex Systems ’98, 3-21, University of New South Wales, Sydney, Australia, 1998.

  • [26] W. S. McCulloch and W. Pitts, A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biology, 5(4), 115-133, 1943.

  • [27] J. J. Hopfield, Neural networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Sciences, 79(8), 2554, 1982.

  • [28] T. Kohonen, Self-Organizing Maps. Springer, 3rd edition, 2000.

  • [29] S. Garnier, J. Gautrais, and G. Theraulaz, The biological principles of swarm intelligence. Swarm Intelligence, 1(1), 3-31, 2007.

  • [30] C. W. Reynolds, Flocks, herds, and schools: A distributed behavioral model. Computer Graphics, 21(4), 25-34, 1987.

  • [31] J. Johnson, Hypernetworks in the Science of Complex Systems, volume 1 of Series on Complexity Science. World Scientific, 2010.

  • [32] E. M. Rauch, M. M. Millonas, and D. R. Chialvo, Pattern formation and functionality in swarm models. Physics Letters A, 207(3-4), 185-193, 1995.

  • [33] M. Nagy, Z. Akos, D. Biro, and T. Vicsek, Hierarchical group dynamics in pigeon flocks. Nature, 464:890-893, 2010.

  • [34] I. D. Couzin, J. Krause, R. James, G. D. Ruxton, and N. R Franks, Collective memory and spatial sorting in animal groups. Journal of Theoretical Biology, 218(1), 1-11, 2002.

  • [35] W. Fontana, Modelling ’evo-devo’ with RNA. BioEssays, 24(12), 1164-1177, 2002.

  • [36] A. Munteanu and R. V. Solé, Neutrality and robustness in evodevo: Emergence of lateral inhibition. PLoS Comput Biol, 4(11), e1000226, 2008.

  • [37] C. Balkenius, J. Zlatev, C. Brezeal, K. Dautenhahn, and H. Kozima, Eds. Proceedings of the First International Workshop on Epigenetic Robotics: Modeling Cognitive Development in Robotic Systems, volume 85, Lund, Sweden, 2001. Lund University Cognitive Studies.

  • [38] H. M. Botee and E. Bonabeau, Evolving ant colony optimization. Advances in Complex Systems, 1, 149-159, 1998.

  • [39] J. H. Holland, Adaptation in natural and artificial systems. The University of Michigan Press, 1975.

  • [40] J. H. Holland, Hidden Order: How Adaptation Builds Complexity. Helix books. Addison-Wesley, July 1995.

  • [41] Y. Bar-Yam, Multiscale variety in complex systems. Complexity, 9(4), 37-45, 2004.

  • [42] M. Prokopenko, F. Boschetti, and A. Ryan, An information-theoretic primer on complexity, self-organisation and emergence. Complexity, 15(1), 11-28, 2009.

  • [43] C. Gershenson, The world as evolving information. In Yaneer Bar-Yam, Ed., Proceedings of International Conference on Complex Systems ICCS2007, 2007.

  • [44] J. von Neumann, The Theory of Self-Reproducing Automata. University of Illinois Press, 1966. Edited by A. W. Burks.

  • [45] S. Wolfram, Theory and Application of Cellular Automata. World Scientific, 1986.

  • [46] A. Wuensche and M. J. Lesser, The Global Dynamics of Cellular Automata; An Atlas of Basin of Attraction Fields of One-Dimensional Cellular Automata. Santa Fe Institute Studies in the Sciences of Complexity. Addison-Wesley, Reading, MA, 1992.

  • [47] S. Wolfram, A New Kind of Science. Wolfram Media, 2002.

  • [48] G. Juárez Martínez, H. V. McIntosh, J. C. Seck Tuoh Mora, and S. V. Chapa Vergara, Rule 110 objects and other collision-based constructions. Journal of Cellular Automata, 2(3), 219-242, 2007.

  • [49] M. Cook, Universality in elementary cellular automata. Complex Systems, 15(1), 1-40, 2004.

  • [50] H. A. Simon, The Sciences of the Artificial. MIT Press, 3rd edition, 1996.

  • [51] G. Schlosser and G. P. Wagner, Modularity in Development and Evolution. The University of Chicago Press, 2004.

  • [52] W. Callebaut and D. Rasskin-Gutman, Modularity: Understanding the Development and Evolution of Natural Complex Systems. MIT Press, 2005.

  • [53] D. H. Wolpert and W. G. Macready, No free lunch theorems for search. Technical Report SFI-WP-95-02-010, Santa Fe Institute, 1995.

  • [54] D. H. Wolpert and W. G. Macready, No Free Lunch Theorems for Optimization. IEEE Transactions on Evolutionary Computation, 1(1), 67-82, 1997.

  • [55] C. Gershenson, Cognitive paradigms: Which one is the best? Cognitive Systems Research, 5(2), 135-156, June 2004.

  • [56] A. M. Turing. On computable numbers, with an application to the Entscheidungsproblem. Proceedings of the London Mathematical Society, Series 2, 42:230-265, 1936.

  • [57] Z. Wang, G. L. Durst, R. C. Eberhart, D. B. Boyd, and Z. B. Miled, Particle swarm optimization and neural network application for qsar. In In HiCOMB, 26-30, 2004.

  • [58] Y. Chen, B. Yang, and J. Dong, Evolving flexible neural networks using ant programming and pso algorithm. Advances in Neural Networks ISNN 2004, 211-216, 2004.

  • [59] C. Blum and K. Socha, Training feed-forward neural networks with ant colony optimization: An application to pattern classification. Hybrid Intelligent Systems, International Conference on, 233-238, 2005.

  • [60] B. Mozafari, A. M. Ranjbar, T. Amraee, M. Mirjafari, and A. R. Shirani, A hybrid of particle swarm and ant colony optimization algorithms for reactive power market simulation. Journal of Intelligent and Fuzzy Systems, 17(6), 557-574, 2006.

  • [61] C. Martin and J. Reggia, Self-assembly of neural networks viewed as swarm intelligence. Swarm Intelligence, 4(1), 1-36, 2010.

  • [62] G. Stahl, Group Cognition: Computer Support for Building Collaborative Knowledge. MIT Press, 2006.

  • [63] C. Gershenson and F. Heylighen, When can we call a system selforganizing? In W Banzhaf, T. Christaller, P. Dittrich, J. T. Kim, and J. Ziegler, editors, Advances in Artificial Life, 7th European Conference, ECAL 2003 LNAI 2801, 606-614, Berlin, 2003. Springer.

  • [64] C. Gershenson, Design and Control of Self-organizing Systems. CopIt Arxives, Mexico, 2007.

  • [65] D. T. Pham, A. Ghanbarzadeh, E. Koc, S. Otri, S. Rahim, and M. Zaidi, The bees algorithm a novel tool for complex optimisation problems. In Intelligent production machines and systems: 2nd I* PROMS Virtual Conference, 3-14 July 2006, page 454. Elsevier Science, 2006.

  • [66] X. Yang, Firefly algorithms for multimodal optimization. In Osamu Watanabe and Thomas Zeugmann, editors, SAGA, volume 5792 of Lecture Notes in Computer Science, 169-178. Springer, 2009.

  • [67] K. N. Krishnanand and D. Ghose, Glowworm swarm optimization for simultaneous capture of multiple local optima of multimodal functions. Swarm Intelligence, 3(2), 87-124, June 2009.


Journal + Issues