Preparation and characterization of polyvinyl alcohol/carbon nanotube (PVA/CNT) conductive nanofibers

Abstract

The aim of this study was to prepare polyvinyl alcohol/carbon nanotube (PVA/CNT) conductive nanofibers by the electrospinning process. Prior to composite preparation, carbon nanotubes are dispersed homogeneously in N-methyl-2-pyrrolidone (NMP) and mixed with a PVA solution. A series of PVA/CNT films and nanofibers with various CNT compositions are prepared. Electrical conductivity and specific capacitance of spin-coated PVA/CNT films and electrospun PVA/CNT fibers increase with an increase in CNT content. Electrospun PVA/CNT nanofibers with a larger electrode surface result in a higher specific capacitance when compared with spin-coated PVA/CNT films. According to the morphology analysis, homogeneous and highly porous PVA/CNT mats containing 50–300 nm diameter nanofibers are obtained by the electrospinning process.

Purchase article
Get instant unlimited access to the article.
$42.00
Price including VAT
Log in
Already have access? Please log in.


Journal + Issues

Journal of Polymer Engineering publishes reviews, original basic and applied research contributions as well as recent technological developments in polymer engineering. Polymer engineering is a strongly interdisciplinary field and papers published by the journal may span areas such as polymer physics, polymer processing and engineering of polymer-based materials and their applications.

Search