Effect of processing technology on the morphological, mechanical and electrical properties of conductive polymer composites

Anett Király 1  and Ferenc Ronkay 1
  • 1 Faculty of Mechanical Engineering, Department of Polymer Engineering, Budapest University of Technology and Economics, H-1111 Budapest, Műegyetem rkp. 3, Hungary
Anett Király and Ferenc Ronkay

Abstract

Conducting carbon/polypropylene (PP) and carbon/poly(butylene terephthalate) (PBT) composites containing crystalline natural graphite and carbon black (CB) were prepared by compression and injection molding. The effect of the processing technology on the electrical, mechanical, and morphological properties was investigated. Determination of the constant torque at the end of the mixing process and differential scanning calorimetric (DSC) measurements showed that graphite had better connectivity with the more polar matrix (PBT) than with the less polar one (PP). Scanning electron microscopy (SEM) studies showed that compression molding results in a homogeneous structure, while injection molding results in a skin-core structure with different orientations. Layered electrical conductivity studies showed that the electrical conductivity of the compression molded samples did not change along the thickness of the sample, while that of the injection molded samples changed throughout the material, which is due to the different structures developed with each type of processing.

  • [1]

    Planes E, Flandin L, Alberola N. Energy Procedia 2012, 20, 311–323.

  • [2]

    Kim M, Lim JW, Kim KH, Lee DG. Compos. Struct. 2013, 96, 569–575.

  • [3]

    Zhang SM, Lin L, Deng H, Gao X, Bilotti E, Peijs T, Zhang Q, Fu Q. eXPRESS Polym. Lett. 2012, 6, 159–168.

  • [4]

    Szentes A, Varga Cs, Horvath G, Bartha L, Konya Z, Haspel H, Szel J, Kukovecz A. eXPRESS Polym. Lett. 2012, 6, 494–502.

  • [5]

    Bouatia S, Mighri F, Bousmina M. Fuel Cells 2008, 8, 120–128.

  • [6]

    Yakisir D, Mighri F, Bousmina M. Macromol. Rapid Comm. 2006, 27, 1596–1602.

  • [7]

    Müller A, Kauranen P, von Ganski A, Hell B. J. Power Sources 2006, 154, 467–471.

  • [8]

    Antunes RA, de Oliveira MCL, Ett G, Ett V. J. Power Sources 2011, 196, 2945–2961.

  • [9]

    Wakabayashi K, Pierre C, Diking DA, Ruoff RS, Ramanathan T, Brinson LC, Torkelson JM. Macromolecules 2008, 41, 1905–1908.

  • [10]

    Huang J, Baird DG, McGrath JE. J. Power Sources 2005, 150, 110–119.

  • [11]

    Tucker KW, Weeks GP. 1997, US Patent 5614312.

  • [12]

    Derieth T, Bandlamudi G, Beckhaus P, Kreuz C, Mahlendorf F, Heinzel A. J. New Mater. Electrochem. Syst. 2008, 11, 21–29.

  • [13]

    Mighri F, Huneault MA, Champagne MF. Polym. Eng. Sci. 2004, 44, 1755–1765.

  • [14]

    Du F, Fischer J, Winey K. Phys. Rev. B 2005, 72, 1–4.

  • [15]

    Behnam A, Guo J, Ural A. J. App. Phys. 2007, 102, 044313.

  • [16]

    Tiusanen J, Vlasveld D, Vourinen J. Compos. Sci. Technol. 2012, 72, 1741–1752.

  • [17]

    Bauhofer W, Kovacs JZ. Compos. Sci. Technol. 2009, 69, 1486–1498.

  • [18]

    Eken AE, Tozzi EJ, Klingenberg DJ, Bauhofer W. Polymer 2011, 52, 5178–5185.

  • [19]

    Skipa T, Lellinger D, Böhm W, Saphiannikova M, Alig I. Polymer 2010, 51, 201–210.

  • [20]

    Alig I, Lellinger D, Engel M, Skipa T, Pötschke P. Polymer 2008, 49, 1902–1909.

  • [21]

    Kovacs JZ, Velagala BS, Schulte K, Bauhofer W. Compos. Sci. Technol. 2007, 67, 922–928.

  • [22]

    Zhang BF, Jiang AY, Liu DB, Wu HH, Zou JC. Adv. Mat. Res. 2012, 472–475, 1059–1062.

  • [23]

    Liao SH, Yen CY, Weng CC, Lin YF, Ma CCM, Yong CH, Tsai MC, Yen MY, Hsiao MC, Lee SJ, Xie XF, Hsiao YH. J. Power Sources 2008, 185, 1225–1232.

  • [24]

    Karger-Kocsis J. Polypropylene: Structure, Blends and Composites, 1st ed., Chapman & Hall: Cambridge, 1995.

  • [25]

    Karger-Kocsis J. Polypropylene: An A-Z Reference, 1st ed., Kluwer Academic Publishers: London, 1999.

  • [26]

    Wu HH, Feng LF, Jiang AY, Zhang BF. Polym. J. 2011, 43, 930–936.

  • [27]

    Li J, Zhou C, Gang W. Polym. Test. 2003, 22, 217–223.

  • [28]

    Wu Z, Zhou C, Zhu N. Polym. Test. 2001, 21, 479–483.

  • [29]

    He F, Fan J, Lau S. Polym. Test. 2008, 27, 964–970.

  • [30]

    Causin V, Marega C, Marigo A, Ferrara G, Ferraro A. Eur. Polym. J. 2006, 42, 3153–3161.

  • [31]

    Ferreira CI, Dal Castel C, Ovideo MAS, Mauler RS. Thermochim. Acta 2013, 533, 40–48.

  • [32]

    Király A, Ronkay F. Polym. Composite. 2013, 34, 1195–1203.

  • [33]

    Brandup, J, Immergut, EH. Polymer Handbook 3, 1st ed., Wiley: New York, 1988.

  • [34]

    Jeh JT, Runt JP. J. Polym. Sci., Part B: Polym. Phys. 1989, 27, 1543–1550.

  • [35]

    Nichols ME, Robertson RE. J. Polym. Sci., Part B: Polym. Phys. 1992, 30, 755–768.

  • [36]

    Krupa I, Novák I, Chodák I. Synth. Met. 2004, 145, 245–252.

  • [37]

    Wu H, Lu C, Zhang W, Zhang X. Mater. Design 2013, 52, 621–.

  • [38]

    Király A, Ronkay F. Polym. Polym. Compos. 2013, 21, 93–100.

Purchase article
Get instant unlimited access to the article.
$42.00
Log in
Already have access? Please log in.


Journal + Issues

Journal of Polymer Engineering publishes reviews, original basic and applied research contributions as well as recent technological developments in polymer engineering. Polymer engineering is a strongly interdisciplinary field and papers published by the journal may span areas such as polymer physics, polymer processing and engineering of polymer-based materials and their applications.

Search