Electrodes: definitions and systematisation – a crystallographers view

  • 1 Institut für Experimentelle Physik, TU Bergakademie Freiberg, Leipziger Str. 23, Freiberg, Germany
  • 2 Samara Center for Theoretical Materials Science, Samara National Research University, Moskovskoye Shosse 34, Samara, Russia
  • 3 Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
  • 4 Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, E-08193, Bellaterra, Spain
Falk Meutzner
  • Corresponding author
  • Institut für Experimentelle Physik, TU Bergakademie Freiberg, Leipziger Str. 23, Freiberg, 09596, Germany
  • Samara Center for Theoretical Materials Science, Samara National Research University, Moskovskoye Shosse 34, Samara, 443086, Russia
  • Email
  • Search for other articles:
  • degruyter.comGoogle Scholar
, Matthias Zschornak
  • Institut für Experimentelle Physik, TU Bergakademie Freiberg, Leipziger Str. 23, Freiberg, 09596, Germany
  • Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
  • Email
  • Search for other articles:
  • degruyter.comGoogle Scholar
, Melanie Nentwich
  • Institut für Experimentelle Physik, TU Bergakademie Freiberg, Leipziger Str. 23, Freiberg, 09596, Germany
  • Email
  • Search for other articles:
  • degruyter.comGoogle Scholar
, Damien Monti
  • Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, E-08193, Bellaterra, Catalonia, Spain
  • Email
  • Search for other articles:
  • degruyter.comGoogle Scholar
and Tilmann Leisegang
  • Institut für Experimentelle Physik, TU Bergakademie Freiberg, Leipziger Str. 23, Freiberg, 09596, Germany
  • Samara Center for Theoretical Materials Science, Samara National Research University, Moskovskoye Shosse 34, Samara, 443086, Russia
  • Email
  • Search for other articles:
  • degruyter.comGoogle Scholar

Abstract

Electrodes are, in combination with electrolytes and the active, reacting materials the function-giving materials in electrochemical energy storage devices. They are responsible for the transfer of electrons and provide the surface at which the electrochemical reactions take place. Those electrochemical reactions span the potential difference which drives the battery. We present a crystallographically inspired systematisation of all electrodes found in electrochemical storages that comprise inert and reactive electrodes, subdivided in active and passive electrodes, and solvation, mixed crystal, and phase transition electrodes, respectively. After the description of all electrode types we present a concise summary of battery chemistries and the applied electrode types.

  • [1]

    Wiberg N. Lehrbuch der Anorganischen Chemie, 102. stark umgearbeitete und verbesserte Auflage. Berlin: Walter de Gruyter & Co, 2007.

  • [2]

    Takahashi Y, Shevchuk AI, Novak P, Babakinejad B, Macpherson J, Unwin PR, et al. Topographical and electrochemical nanoscale imaging of living cells using voltage-switching mode scanning electrochemical microscopy. Proc Nat Acad. 2012;109:11540–5. DOI: .

    • Crossref
    • Export Citation
  • [3]

    Tarascon JM, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature. 2001;414:359–67.

    • Crossref
    • PubMed
    • Export Citation
  • [4]

    Leuthardt EC, Schalk G, Wolpaw JR, Ojemann JG, Moran DW. A brain-computer interface using electrocorticographic signals in humans. J Neural Eng. 2004;1:63–71.

    • Crossref
    • PubMed
    • Export Citation
  • [5]

    Sutton SJ, Lewin PL, Swingler SG. Review of global HVDC subsea cable projects and the application of sea electrodes. Int J Electr Power Energy Syst. 2017;87:121–35.

    • Crossref
    • Export Citation
  • [6]

    Obrovac MN, Chevrier VL. Alloy negative electrodes for Li-Ion batteries. Chem Rev. 2014;114:11444–502.

    • Crossref
    • PubMed
    • Export Citation
  • [7]

    Reddy TD, editor(s). Linden’s handbook of batteries, 4th ed. McGraw Hill, 2011.

  • [8]

    Daniel C, Besenhard J. Handbook of battery materials, 2nd ed, vol. 1. Weihnheim: Wiley-VCH, 2011.

  • [9]

    Daniel C, Mohanty D, Li J, Wood DL. Cathode materials review. AIP Conf Proc. 2014;26–43 1597.

  • [10]

    Dresselhaus MS, Dresselhaus G. Intercalation compounds of graphite. Adv Phys. 2002;51:1–186.

    • Crossref
    • Export Citation
  • [11]

    Whittingham MS. Lithium batteries and cathode materials. Chem Rev. 2004;104:4271–301.

    • Crossref
    • PubMed
    • Export Citation
  • [12]

    Meyer DC, Leisegang T. Electrochemical storage materials: from crystallography to engineering. DE GRUYTER OLDENBOURG Publishing House, 2018.

  • [13]

    Faraday M. Experimental researches in electricity. Philos Trans Royal Soc London. 1832;122:125–62.

    • Crossref
    • Export Citation
  • [14]

    Verma P, Maire P, Novák P. A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochim Acta. 2010;55:6332–41.

    • Crossref
    • Export Citation
  • [15]

    Bruce PG, Freunberger SA, Hardwick LJ, Tarascon JM. Li-O2 and Li-S batteries with high energy storage. Nat Mater. 2012;11:19–29.

    • Crossref
    • Export Citation
  • [16]

    Ponce de Leon C, Frías-Ferrer A, González-García J, Szánto DA, Walsh FC. Redox flow cells for energy conversion. J Power Sources. 2006;160:716–32.

    • Crossref
    • Export Citation
  • [17]

    Skyllas-Kazacos M, Chakrabarti MH, Hajimolana SA, Mjalli FS, Saleem M. Progress in flow battery research and development. J Electrochem Soc. 2011;158:R55–79.

    • Crossref
    • Export Citation
  • [18]

    Remick RJ, Ang PGP. Electrically rechargeable anionically active reduction – oxidation electrical storage-supply system. U.S. Patent No. 4,485,154 1984 27Nov.

  • [19]

    Lu X, Xia G, Lemmon JP, Yang Z. Advanced materials for sodium-beta alumina batteries: status, challenges and perspectives. J Power Sources. 2010;195:2431–42.

    • Crossref
    • Export Citation
  • [20]

    Cheng F, Chen J. Metal–air batteries: from oxygen reduction electrochemistry to cathode catalysts. Chem Soc Rev. 2012;41:2172–92.

    • Crossref
    • PubMed
    • Export Citation
  • [21]

    Sun B, Skyllas-Kazakos M. Chemical modification and electrochemical behaviour of graphite fibre in acidic vanadium solution. Electrochim Acta. 1991;36:513–17.

    • Crossref
    • Export Citation
  • [22]

    Sun B, Skyllas-Kazacos M. Modification of graphite electrode materials for vanadium redox flow battery application – I. Thermal treatment. Electrochim Acta. 1992;37:1253–60.

    • Crossref
    • Export Citation
  • [23]

    Sun B, Skyllas-Kazacos M. Chemical modification of graphite electrode materials for vanadium redox flow battery application – part II. Acid treatments. Electrochim Acta. 1992;37:2459–65.

    • Crossref
    • Export Citation
  • [24]

    Holze R. Anodes – materials for negative electrodes in electrochemical energy technology. AIP Conf Proc. 2014;1597:44–65.

  • [25]

    Powers RW, Breiter MW. The anodic dissolution and passivation of zinc in concentrated potassium hydroxide solutions. J Electrochem Soc. 1969;116:719–29.

    • Crossref
    • Export Citation
  • [26]

    Zendejas MA, Thomas JO. Conduction mechanisms in solid electrolytes: Na+ beta-alumina. Phys Scr. 1990;1990:235–44.

  • [27]

    Diggle JW, Despic AR, Bockris JM. The mechanism of the dendritic electrocrystallization of zinc. J Electrochem Soc. 1969;116:1503–14.

    • Crossref
    • Export Citation
  • [28]

    Palacin MR. Recent advances in rechargeable battery materials: a chemist’s perspective. Chem Soc Rev. 2009;38:2565–75.

    • Crossref
    • PubMed
    • Export Citation
  • [29]

    Galloway RC. A sodium/beta-alumina/nickel chloride secondary cell. J Electrochem Soc. 1987;134:256–7.

    • Crossref
    • Export Citation
  • [30]

    Bones RJ, Teagle DA, Brooker SD, Cullen FL. Development of a Ni, NiCl2 positive electrode for a liquid sodium (ZEBRA) battery cell. J Electrochem Soc. 1989;136:1274–7.

    • Crossref
    • Export Citation
  • [31]

    Hill RJ. The crystal structure of lead dioxides from the positive plate of the lead/acid battery. Mat Res Bull. 1982;17:769–84.

    • Crossref
    • Export Citation
  • [32]

    D’Antonio P, Santoro A. Powder neutron diffraction study of chemically prepared β-lead dioxide. Acta Cryst B. 1980;36:2394–7.

    • Crossref
    • Export Citation
  • [33]

    James RW, Wood WA. The crystal structure of barytes, celestine and anglesite. Proc Roy Soc A. 1925;109:598–20.

  • [34]

    Cherkouk C, Nestler T. Cathodes – technological review. AIP Conf Proc. 2014;1597:134–45.

  • [35]

    Parker JF, Chervin CN, Pala IR, Machler M, Burz MF, Long JW, et al. Rechargeable nickel–3D zinc batteries: an energy-dense, safer alternative to lithium-ion. Science. 2017;356:415–8.

    • Crossref
    • PubMed
    • Export Citation
  • [36]

    Mulder FM, Weninger BMH, Middelkoop J, Ooms FGB, Schreuders H. Efficient electricity storage with a battolyser, an integrated Ni–fe battery and electrolyser. Energy Environ Sci. 2017;10:756–64.

    • Crossref
    • Export Citation
  • [37]

    Bradwell DJ, Kim H, Sirk AHC, Sadoway DR. Magnesium–antimony liquid metal battery for stationary energy storage. J Am Chem Soc. 2012;134:1895–7.

    • Crossref
    • PubMed
    • Export Citation
  • [38]

    Guidotti RA. Thermal batteries: a technology review and future directions. Proc 27th Int SAMPE Tech Conf Abuquerque 1995;27:807–18.

  • [39]

    Egan DR, Ponce De León C, Wood RJK, Jones RL, Stokes KR, Walsh FC. Developments in electrode materials and electrolytes for aluminium–air batteries. J Power Sources. 2013;236:293–310.

    • Crossref
    • Export Citation
  • [40]

    Narayanan SR, Surya Prakash GK, Manohar A, Yang B, Malkhandi S, Kindler A. Materials challenges and technical approaches for realizing inexpensive and robust iron–air batteries for large-scale energy storage. Solid State Ionics. 2012;216:105–9.

    • Crossref
    • Export Citation
  • [41]

    Winter M, Besenhard JO, Spahr ME, Novák P. Insertion electrode materials for rechargeable lithium batteries. Adv Mater. 1998;10:725–63.

    • Crossref
    • Export Citation
  • [42]

    Kirubakaran A, Jain S, Nema RK. A review on fuel cell technologies and power electronic interface. Renew Sustainable Energy Rev. 2009;13:2430–40.

    • Crossref
    • Export Citation
  • [43]

    Reddy AM, Fichtner M. Batteries based on fluoride shuttle. J Mater Chem. 2011;21:17059–62.

    • Crossref
    • Export Citation
Purchase article
Get instant unlimited access to the article.
$42.00
Log in
Already have access? Please log in.


or
Log in with your institution

Journal + Issues

Search