Multiferroic heterostructures for spintronics

Elzbieta Gradauskaite 1 , Peter Meisenheimer 2 , Marvin Müller 1 , John Heron 2 , and Morgan Trassin 1
  • 1 Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 4, Zurich, Switzerland
  • 2 Department of Materials Science and Engineering, University of Michigan, 48109, Ann Arbor, USA
Elzbieta Gradauskaite
  • Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 4, Zurich, 8093, Switzerland
  • Search for other articles:
  • degruyter.comGoogle Scholar
, Peter Meisenheimer
  • Department of Materials Science and Engineering, University of Michigan, Ann Arbor, 48109, USA
  • Search for other articles:
  • degruyter.comGoogle Scholar
, Marvin Müller
  • Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 4, Zurich, 8093, Switzerland
  • Search for other articles:
  • degruyter.comGoogle Scholar
, John Heron
  • Corresponding author
  • Department of Materials Science and Engineering, University of Michigan, Ann Arbor, 48109, USA
  • Search for other articles:
  • degruyter.comGoogle Scholar
and Morgan Trassin
  • Corresponding author
  • Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 4, Zurich, 8093, Switzerland
  • Email
  • Search for other articles:
  • degruyter.comGoogle Scholar

Abstract

For next-generation technology, magnetic systems are of interest due to the natural ability to store information and, through spin transport, propagate this information for logic functions. Controlling the magnetization state through currents has proven energy inefficient. Multiferroic thin-film heterostructures, combining ferroelectric and ferromagnetic orders, hold promise for energy efficient electronics. The electric field control of magnetic order is expected to reduce energy dissipation by 2–3 orders of magnitude relative to the current state-of-the-art. The coupling between electrical and magnetic orders in multiferroic and magnetoelectric thin-film heterostructures relies on interfacial coupling though magnetic exchange or mechanical strain and the correlation between domains in adjacent functional ferroic layers. We review the recent developments in electrical control of magnetism through artificial magnetoelectric heterostructures, domain imprint, emergent physics and device paradigms for magnetoelectric logic, neuromorphic devices, and hybrid magnetoelectric/spin-current-based applications. Finally, we conclude with a discussion of experiments that probe the crucial dynamics of the magnetoelectric switching and optical tuning of ferroelectric states towards all-optical control of magnetoelectric switching events.

  • 1.

    Fiebig M, Lottermoser T, Meier D, Trassin M. The evolution of multiferroics. Nat Rev Mater. 2016;1:16046.

    • Crossref
    • Export Citation
  • 2.

    DOI: .

  • 3.

    Spaldin NA, Ramesh R. Advances in magnetoelectric multiferroics. Nat Mater. 2019;18:203–12.

    • Crossref
    • PubMed
    • Export Citation
  • 4.

    Ramesh R, Spaldin NA. Multiferroics: progress and prospects in thin films. Nat Mater. 2007;6:21–9.

    • Crossref
    • PubMed
    • Export Citation
  • 5.

    DOI: .

  • 6.

    Trassin M. Low energy consumption spintronics using multiferroic heterostructures. J Phys Condens Matter. 2016;28:033001.

  • 7.

    Fernandes Vaz CA, Staub U. Artificial multiferroic heterostructures. J Mater Chem C. 2013;1:6731–42.

    • Crossref
    • Export Citation
  • 8.

    Scott JF. Multiferroic memories. Nat Mater. 2007;6:256–7.

  • 9.

    Bibes M. Towards a magnetoelectric memory. Nat Mater. 2008;7:7–8.

  • 10.

    Hill NA. Why are there so few magnetic ferroelectrics? J Phys Chem B. 2000;104:6694.

    • Crossref
    • Export Citation
  • 11.

    DOI: .

  • 12.

    Wiegelmann H, Jansen AG, Wyder P, Rivera JP, Schmid H. Magnetoelectric effect of Cr2O3 in strong static magnetic fields. Ferroelectrics. 1994;162:141–6.

    • Crossref
    • Export Citation
  • 13.

    Fiebig M, Fröhlich D, Krichevtsov BB, Pisarev RV. Second harmonic generation and magnetic-dipole-electric-dipole interference in antiferromagnetic Cr2O3 . Phys Rev Lett. 1994;73:2127–30.

    • Crossref
    • PubMed
    • Export Citation
  • 14.

    Van Aken BB, Palstra TT, Filippetti A, Spaldin NA. The origin of ferroelectricity in magnetoelectric YMnO3 . Nat Mater. 2004;3:164–70.

    • Crossref
    • PubMed
    • Export Citation
  • 15.

    Fiebig M, Lottermoser T, Fröhlich D, Goltsev AV, Pisarev RV. Observation of coupled magnetic and electric domains. Nature. 2002;419:818–20.

    • Crossref
    • PubMed
    • Export Citation
  • 16.

    Bertaut EF, Mercier M. Structure magnetique de MnYO3. Phys Lett. 1963;5:27–9.

    • Crossref
    • Export Citation
  • 17.

    DOI: .

  • 18.

    Nordlander J, Campanini M, Rossell MD, Erni R, Meier QN, Cano A, et al. The ultrathin limit of improper ferroelectricity. Nat Commun. 2019;10:5591.

    • Crossref
    • PubMed
    • Export Citation
  • 19.

    Meier D, Seidel J, Cano A, Delaney K, Kumagai Y, Mostovoy M, et al. Anisotropic conductance at improper ferroelectric domain walls. Nat Mater. 2012;11:284–8.

    • Crossref
    • PubMed
    • Export Citation
  • 20.

    Schaab J, Skjærvø SH, Krohns S, Dai X, Holtz ME, Cano A, et al. Electrical half-wave rectification at ferroelectric domain walls. Nat Nanotechnol. 2018;13:1028–34.

    • Crossref
    • PubMed
    • Export Citation
  • 21.

    Evans DM, Holstad TS, Mosberg AB, Småbråten DR, Vullum PE, Dadlani AL, et al. Conductivity control via minimally invasive anti-Frenkel defects in a functional oxide. Nat Mater. 2020;19:1195–1200.

  • 22.

    Wang J, Neaton JB, Zheng H, Nagarajan V, Ogale SB, Liu B, et al. Epitaxial BiFeO3 multiferroic thin film heterostructures. Science. 2003;299:1719–22.

    • Crossref
    • PubMed
    • Export Citation
  • 23.

    Zhang JX, He Q, Trassin M, Luo W, Yi D, Rossell MD, et al. Microscopic origin of the giant ferroelectric polarization in tetragonal-like BiFeO3 . Phys Rev Lett. 2011;107:1–5.

  • 24.

    Lebeugle D, Colson D, Forget A, Viret M, Bataille AM, Gukasov A. Electric-field-induced spin flop in BiFeO3 single crystals at room temperature. Phys Rev Lett. 2008;100:1–4.

  • 25.

    Lebeugle D, Mougin A, Viret M, Colson D, Ranno L. Electric field switching of the magnetic anisotropy of a ferromagnetic layer exchange coupled to the multiferroic compound BiFeO3 . Phys Rev Lett. 2009;103:257601.

    • Crossref
    • PubMed
    • Export Citation
  • 26.

    Sando D, Barthélémy A, Bibes M. BiFeO3 epitaxial thin films and devices: Past, present and future. J Phys Condens Matter. 2014;26:473201.

  • 27.

    Heron JT, Schlom DG, Ramesh R. Electric field control of magnetism using BiFeO3 -based heterostructures. Appl Phys Rev. 2014;1:21303.

    • Crossref
    • Export Citation
  • 28.

    DOI: .

  • 29.

    Burns SR, Paull O, Juraszek J, Nagarajan V, Sando D. The experimentalist’s guide to the cycloid, or noncollinear antiferromagnetism in Epitaxial BiFeO3 . Adv Mater. 2020;2003711:1–51.

  • 30.

    Trassin M, Viart N, Versini G, Barre S, Pourroy G, Lee J, et al. Room temperature ferrimagnetic thin films of the magnetoelectric Ga2-xFexO3 J. Mater Chem. 2009;19:8876–80.

    • Crossref
    • Export Citation
  • 31.

    Trassin M, Viart N, Versini G, Loison JL, Vola JP, Schmerber G, et al. Epitaxial thin films of multiferroic GaFeO3 on conducting indium tin oxide (001) buffered yttrium-stabilized zirconia (001) by pulsed laser deposition. Appl Phys Lett. 2007;91:2–5.

  • 32.

    Thomasson A, Cherifi S, Lefevre C, Roulland F, Gautier B, Albertini D, et al. Room temperature multiferroicity in Ga0.6Fe1.4O3:Mg thin films. J Appl Phys. 2013;113:3–7.

  • 33.

    Homkar S, Preziosi D, Devaux X, Bouillet C, Nordlander J, Trassin M, et al. Ultrathin regime growth of atomically flat multiferroic gallium ferrite films with perpendicular magnetic anisotropy. Phys Rev Mater. 2019;3:1–10.

  • 34.

    Aurivillius B. Mixed bismuth oxides with layer lattices. 1. the structure type of CaNb2Bi2O9. Ark Kemi. 1949;1:463–80.

  • 35.

    Benedek NA, Rondinelli JM, Djani H, Ghosez P, Lightfoot P. Understanding ferroelectricity in layered perovskites: new ideas and insights from theory and experiments. Dalt Trans. 2015;44:10543–58.

    • Crossref
    • Export Citation
  • 36.

    Gradauskaite E, Campanini M, Biswas B, Schneider CW, Fiebig M, Rossell MD, et al. Robust in-plane ferroelectricity in ultrathin epitaxial Aurivillius films. Adv Mater Interfaces. 2020;2000202:1–8.

  • 37.

    Keeney L, Smith RJ, Palizdar M, Schmidt M, Bell AJ, Coleman JN, et al. Ferroelectric behavior in exfoliated 2D Aurivillius oxide flakes of sub-unit cell thickness. Adv Electron Mater. 2020;6:1901264.

  • 38.

    Wang C, Ke X, Wang J, Liang R, Luo Z, Tian Y, et al. Ferroelastic switching in a layered-perovskite thin film. Nat Commun. 2016;7:10636.

    • Crossref
    • Export Citation
  • 39.

    Lee HN, Hesse D, Zakharov N, Gösele U. Ferroelectric Bi3.25La0.75Ti3o12 films of uniform a-axis orientation on silicon substrates. Science. 2002;296:2006–9.

    • Crossref
    • PubMed
    • Export Citation
  • 40.

    Faraz A, Maity T, Schmidt M, Deepak N, Roy S, Pemble ME, et al. Direct visualization of magnetic-field-induced magnetoelectric switching in multiferroic aurivillius phase thin films. J Am Ceram Soc. 2017;100:975–87.

    • Crossref
    • Export Citation
  • 41.

    Keeney L, Downing C, Schmidt M, Pemble ME, Nicolosi V, Whatmore RW. Direct atomic scale determination of magnetic ion partition in a room temperature multiferroic material. Sci Rep. 2017;7:1–11.

  • 42.

    Baibich MN, Broto JM, Fert A, Van Dau FN, Petroff F, Eitenne P, et al. Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys Rev Lett. 1988;61:2472–5.

    • Crossref
    • PubMed
    • Export Citation
  • 43.

    Binasch G, Grünberg P, Saurenbach F, Zinn W. Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys Rev B. 1989;39:4828–30.

    • Crossref
    • Export Citation
  • 44.

    Myers EB, Ralph DC, Katine JA, Louie RN, Buhrman RA. Current-induced switching of domains in magnetic multilayer devices. Science. 1999;285:867–70.

    • Crossref
    • PubMed
    • Export Citation
  • 45.

    Jian-Gang ZH. Magnetoresistive random access memory: the path to competitiveness and scalability. Proc IEEE. 2008;96:1786–98.

    • Crossref
    • Export Citation
  • 46.

    Miron IM, Gaudin G, Auffret S, Rodmacq B, Schuhl A, Pizzini S, et al. Current-driven spin torque induced by the Rashba effect in a ferromagnetic metal layer. Nat Mater. 2010;9:230–4.

    • Crossref
    • Export Citation
  • 47.

    Miron IM, Garello K, Gaudin G, Zermatten PJ, Costache MV, Auffret S, et al. Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection. Nature. 2011;476:189–93.

    • Crossref
    • PubMed
    • Export Citation
  • 48.

    Vélez S, Schaab J, Wörnle MS, Müller M, Gradauskaite E, Welter P, et al. High-speed domain wall racetracks in a magnetic insulator. Nat Commun. 2019;10:4750.

    • Crossref
    • Export Citation
  • 49.

    Zhuravlev MY, Sabirianov RF, Jaswal SS, Tsymbal EY. Giant electroresistance in ferroelectric tunnel junctions. Phys Rev Lett. 2005;94:1–4.

  • 50.

    Garcia V, Fusil S, Bouzehouane K, Enouz-Vedrenne S, Mathur ND, Barthélémy A, et al. Giant tunnel electroresistance for non-destructive readout of ferroelectric states. Nature. 2009;460:81–4.

    • Crossref
    • PubMed
    • Export Citation
  • 51.

    Strkalj N, Gradauskaite E, Nordlander J, Trassin M. Design and manipulation of ferroic domains in complex oxide heterostructures. Materials. 2019;12:3108.

  • 52.

    Strkalj N, De Luca G, Campanini M, Pal S, Schaab J, Gattinoni C, et al. Depolarizing-field effects in epitaxial capacitor heterostructures. Phys Rev Lett. 2019;123:147601.

    • Crossref
    • PubMed
    • Export Citation
  • 53.

    Junquera J, Ghosez P. Critical thickness for ferroelectricity in perovskite ultrathin films. Nature. 2003;422:506–9.

    • Crossref
    • PubMed
    • Export Citation
  • 54.

    Hu J-M, Duan C-G, Nan C-W, Chen L-Q. Understanding and designing magnetoelectric heterostructures guided by computation: progresses, remaining questions, and perspectives. npj Comput Mater. 2017;3:18.

    • Crossref
    • Export Citation
  • 55.

    Meisenheimer PB, Novakov S, Vu NM, Heron JT. Perspective: magnetoelectric switching in thin film multiferroic heterostructures. J Appl Phys. 2018;123:240901.

    • Crossref
    • Export Citation
  • 56.

    Bibes M, Villegas JE, Barthélémy A. Ultrathin oxide films and interfaces for electronics and spintronics. Adv Phys. 2011;60:5–84.

    • Crossref
    • Export Citation
  • 57.

    Zhou J, Trassin M, He Q, Tamura N, Kunz M, Cheng C, et al. Directed assembly of nano-scale phase variants in highly strained BiFeO3 thin films. J Appl Phys. 2012;112:64102.

    • Crossref
    • Export Citation
  • 58.

    Liu M, Li S, Zhou Z, Beguhn S, Lou J, Xu F, et al. Electrically induced enormous magnetic anisotropy in Terfenol-D/lead zinc niobate-lead titanate multiferroic heterostructures. J Appl Phys. 2012;112:63917.

    • Crossref
    • Export Citation
  • 59.

    Liu M, Sun NX. Voltage control of magnetism in multiferroic heterostructures. Phil Trans R Soc A. 2014;372:20120439.

    • Crossref
    • Export Citation
  • 60.

    Lahtinen TH, Franke KJ, Van Dijken S. Electric-field control of magnetic domain wall motion and local magnetization reversal. Sci Rep. 2012;2:258.

    • Crossref
    • PubMed
    • Export Citation
  • 61.

    Franke KJ, López González D, Hämäläinen SJ, van Dijken S. Size dependence of domain pattern transfer in multiferroic heterostructures. Phys Rev Lett. 2014;112:17201.

    • Crossref
    • Export Citation
  • 62.

    Buzzi M, Chopdekar RV, Hockel JL, Bur A, Wu T, Pilet N, et al. Single domain spin manipulation by electric fields in strain coupled artificial multiferroic nanostructures. Phys Rev Lett. 2013;111:27204.

    • Crossref
    • Export Citation
  • 63.

    Lou J, Reed D, Pettiford C, Liu M, Han P, Dong S, et al. Giant microwave tunability in FeGaB/lead magnesium niobate-lead titanate multiferroic composites. Appl Phys Lett. 2008;92:262502.

    • Crossref
    • Export Citation
  • 64.

    Jahjah W, Jay J-P, Le Grand Y, Fessant A, Prinsloo AR, Sheppard CJ, et al. Electrical manipulation of magnetic anisotropy in a Fe81Ga19/Pb(Mg1/3Nb2/3)O3-Pb(ZrxTi1−x)O3 magnetoelectric multiferroic composite. Phys Rev Appl. 2020;13:34015.

    • Crossref
    • Export Citation
  • 65.

    Lou J, Liu M, Reed D, Ren Y, Sun NX. Giant electric field tuning of magnetism in novel multiferroic FeGaB/Lead Zinc Niobate–Lead Titanate (PZN‐PT) heterostructures. Adv Mater. 2009;21:4711–5.

    • Crossref
    • Export Citation
  • 66.

    Wang J-L, Echtenkamp W, Mahmood A, Binek C. Voltage controlled magnetism in Cr2O3 based all-thin-film systems. J Magn Magn Mater. 2019;486:165262.

    • Crossref
    • Export Citation
  • 67.

    Callen ER, Callen HB. Static magnetoelastic coupling in cubic crystals. Phys Rev. 1963;129:578–93.

    • Crossref
    • Export Citation
  • 68.

    Newnham RE. Properties of materials: anisotropy, symmetry, structure. Oxford: OUP, 2004.

  • 69.

    Wu R. Origin of large magnetostriction in FeGa alloys. J Appl Phys. 2002;91:7358–60.

    • Crossref
    • Export Citation
  • 70.

    Du Y, Huang M, Chang S, Schlagel DL, Lograsso TA, McQueeney RJ. Relation between Ga ordering and magnetostriction of Fe-Ga alloys studied by X-ray diffuse scattering. Phys Rev B. 2010;81:54432.

    • Crossref
    • Export Citation
  • 71.

    Wang H, Zhang YN, Wu RQ, Sun LZ, Xu DS, Zhang ZD. Understanding strong magnetostriction in Fe100−xGax alloys. Sci Rep. 2013;3:1–5.

  • 72.

    Furthmuller J, Fahnle M, Herzer G. Theory of magnetostriction in amorphous and polycrystalline ferromagnets. J Phys F Met Phys. 1986;16:L255–L258.

    • Crossref
    • Export Citation
  • 73.

    Wang Q, Li X, Liang C-Y, Barra A, Domann J, Lynch C, et al. Strain-mediated 180° switching in CoFeB and Terfenol-D nanodots with perpendicular magnetic anisotropy. Appl Phys Lett. 2017;110:102903.

    • Crossref
    • Export Citation
  • 74.

    Parkes DE, Cavill SA, Hindmarch AT, Wadley P, McGee F, Staddon CR, et al. Non-volatile voltage control of magnetization and magnetic domain walls in magnetostrictive epitaxial thin films. Appl Phys Lett. 2012;101:72402.

    • Crossref
    • Export Citation
  • 75.

    Ahmad H, Atulasimha J, Bandyopadhyay S. Reversible strain-induced magnetization switching in FeGa nanomagnets: pathway to a rewritable, non-volatile, non-toggle, extremely low energy straintronic memory. Sci Rep. 2015;5:srep18264.

    • PubMed
    • Export Citation
  • 76.

    Lee Y, Liu ZQ, Heron JT, Clarkson JD, Hong J, Ko C, et al. Large resistivity modulation in mixed-phase metallic systems. Nat Commun. 2015;6:ncomms6959.

    • PubMed
    • Export Citation
  • 77.

    Zhang S, Zhao Y, Xiao X, Wu Y, Rizwan S, Yang L, et al. Giant electrical modulation of magnetization in Co40Fe40B20/Pb(Mg1/3Nb2/3)0.7Ti0.3O3(011) heterostructure. Sci Rep. 2014;4:3727.

  • 78.

    Feng M, Wang J, Hu J-M, Wang J, Ma J, Li H-B, et al. Optimizing direct magnetoelectric coupling in Pb(Zr,Ti)O3/Ni multiferroic film heterostructures. Appl Phys Lett. 2015;106:72901.

    • Crossref
    • Export Citation
  • 79.

    Lahtinen TH, Tuomi JO, Van Dijken S. Pattern transfer and electric-field-induced magnetic domain formation in multiferroic heterostructures. Adv Mater. 2011;23:3187–91.

    • Crossref
    • PubMed
    • Export Citation
  • 80.

    Lahtinen TH, van Dijken S. Temperature control of local magnetic anisotropy in multiferroic CoFe/BaTiO3. Appl Phys Lett. 2013;102:112406.

    • Crossref
    • Export Citation
  • 81.

    Kim JY, Yao L, Van Dijken S. Coherent piezoelectric strain transfer to thick epitaxial ferromagnetic films with large lattice mismatch. J Phys Condens Matter. 2013;25:082205.

  • 82.

    Nikonov DE, Young IA. Benchmarking of beyond-CMOS exploratory devices for logic integrated circuits. IEEE J Explor Solid-State Comput Devices Circuits. 2015;1:3–11.

    • Crossref
    • Export Citation
  • 83.

    Jaiswal A, Roy K. MESL: proposal for a non-volatile cascadable magneto-electric spin logic. Sci Rep. 2017;7:39793.

    • Crossref
    • PubMed
    • Export Citation
  • 84.

    Manipatruni S, Nikonov DE, Lin -C-C, Gosavi TA, Liu H, Prasad B, et al. Scalable energy-efficient magnetoelectric spin–orbit logic. Nature. 2019;565:35–42.

    • Crossref
    • PubMed
    • Export Citation
  • 85.

    Ma J, Shi Z, Nan C-W. Magnetoelectric properties of composites of single Pb(Zr,Ti)O3 rods and Terfenol‐D/Epoxy with a single‐period of 1‐3‐type structure. Adv Mater. 2007;19:2571–3.

    • Crossref
    • Export Citation
  • 86.

    Nan C-W, Liu G, Lin Y. Influence of interfacial bonding on giant magnetoelectric response of multiferroic laminated composites of Tb1−xDyxFe2 and PbZrxTi1−xO3. Appl Phys Lett. 2003;83:4366–8.

    • Crossref
    • Export Citation
  • 87.

    Vaz CA, Hoffman J, Segal Y, Reiner JW, Grober RD, Zhang Z, et al. Origin of the magnetoelectric coupling effect in Pb(Zr0.2Ti0.8)O3 / La0.8Sr0. 2MnO3 multiferroic heterostructures. Phys Rev Lett. 2010;104:127202.

    • Crossref
    • Export Citation
  • 88.

    Evans DM, Schilling A, Kumar A, Sanchez D, Ortega N, Arredondo M, et al. Magnetic switching of ferroelectric domains at room temperature in multiferroic PZTFT. Nat Commun. 2013;4:1534.

    • Crossref
    • PubMed
    • Export Citation
  • 89.

    Zhang S, Zhao YG, Li PS, Yang JJ, Rizwan S, Zhang JX, et al. Electric-field control of nonvolatile magnetization in Co40Fe40B20/Pb(Mg1/3Nb2/3)0.7Ti0.3O3 structure at room temperature. Phys Rev Lett. 2012;108:137203.

    • Crossref
    • Export Citation
  • 90.

    Wu T, Bur A, Wong K, Leon Hockel J, Hsu C-J, Kim HK, et al. Electric-poling-induced magnetic anisotropy and electric-field-inducedmagnetization reorientation in magnetoelectric Ni/(011)[Pb(Mg1/3Nb2/3)O3](1-x)-[PbTiO3]x heterostructure. J Appl Phys. 2011;109:07D732.

  • 91.

    Mardana A, Ducharme S, Adenwalla S. Ferroelectric Control of Magnetic Anisotropy. Nano Lett. 2011;11:3862–7.

    • Crossref
    • PubMed
    • Export Citation
  • 92.

    Ghidini M, Pellicelli R, Prieto JL, Moya X, Soussi J, Briscoe J, et al. Non-volatile electrically-driven repeatable magnetization reversal with no applied magnetic field. Nat Commun. 2013;4:1453.

    • Crossref
    • PubMed
    • Export Citation
  • 93.

    Kittmann A, Durdaut P, Zabel S, Reermann J, Schmalz J, Spetzler B, et al. Wide band low noise love wave magnetic field sensor system. Sci Rep. 2018;8:278.

    • Crossref
    • PubMed
    • Export Citation
  • 94.

    Lin H, Page MR, McConney M, Jones J, Howe B, Sun NX. Integrated magnetoelectric devices: filters, pico-Tesla magnetometers, and ultracompact acoustic antennas. MRS Bull. 2018;43:841–7.

    • Crossref
    • Export Citation
  • 95.

    Nan T, Lin H, Gao Y, Matyushov A, Yu G, Chen H, et al. Acoustically actuated ultra-compact NEMS magnetoelectric antennas. Nat Commun. 2017;8:296.

    • Crossref
    • PubMed
    • Export Citation
  • 96.

    Liu M, Obi O, Lou J, Chen Y, Cai Z, Stoute S, et al. Giant electric field tuning of magnetism in novel multiferroic FeGaB/Lead Zinc Niobate–Lead Titanate (PZN‐PT) heterostructures. Adv Funct Mater. 2009;19:1826–31.

    • Crossref
    • Export Citation
  • 97.

    Zaeimbashi M, Lin H, Dong C, Liang X, Nasrollahpour M, Chen H, et al. NanoNeuroRFID: a wireless implantable device based on magnetoelectric antennas. IEEE J Electromagn RF Microwaves Med Biol. 2019;3:206–15.

    • Crossref
    • Export Citation
  • 98.

    Emam S, Sun N-X, Nasrollahpour M. P3-226: electrochemical gas sensor arrays for detecting volatile organic compound biomarkers in the exhaled breath. Alzheimer’s Dement. 2019;15:P1018–P1018.

    • Crossref
    • Export Citation
  • 99.

    Béa H, Bibes M, Ott F, Dupé B, Zhu X-H, Petit S, et al. Mechanisms of exchange bias with multiferroic BiFeO3 epitaxial thin films. Phys Rev Lett. 2008;100:17204.

    • Crossref
    • Export Citation
  • 100.

    Trassin M, Luca GD, Manz S, Fiebig M. Probing Ferroelectric Domain Engineering in BiFeO3 Thin Films by Second Harmonic Generation. 2015:4871–6.

  • 101.

    Gao T, Zhang X, Ratcliff W, Maruyama S, Murakami M, Varatharajan A, et al. Electric-field induced reversible switching of the magnetic easy axis in Co/BiFeO3 on SrTiO3. Nano Lett. 2017;17:2825–32.

    • Crossref
    • PubMed
    • Export Citation
  • 102.

    Heron JT, Bosse JL, He Q, Gao Y, Trassin M, Ye L, et al. Deterministic switching of ferromagnetism at room temperature using an electric field. Nature. 2014;516:370–3.

    • Crossref
    • PubMed
    • Export Citation
  • 103.

    Trassin M, Clarkson JD, Bowden SR, Liu J, Heron JT, Paull RJ, et al. Interfacial coupling in multiferroic/ferromagnet heterostructures. Phys Rev B Condens Matter Mater Phys. 2013;87:134426.

    • Crossref
    • Export Citation
  • 104.

    Radu F, Zabel H. Exchange bias effect of ferro-/antiferromagnetic heterostructures. Springer Tracts Mod Phys. 2007;227:97–184.

  • 105.

    Toyoki K, Shiratsuchi Y, Kobane A, Mitsumata C, Kotani Y, Nakamura T, et al. Magnetoelectric switching of perpendicular exchange bias in Pt/Co/α-Cr2O3/Pt stacked films. Appl Phys Lett. 2015;106:162404.

    • Crossref
    • Export Citation
  • 106.

    Borisov P, Hochstrat A, Chen X, Kleemann W, Binek C. Magnetoelectric switching of exchange bias. Phys Rev Lett. 2005;94:117203.

    • Crossref
    • PubMed
    • Export Citation
  • 107.

    Heron JT, Trassin M, Ashraf K, Gajek M, He Q, Yang SY, et al. Electric-field-induced magnetization reversal in a ferromagnet-multiferroic heterostructure. Phys Rev Lett. 2011;107:1–5.

  • 108.

    Wu SM, Cybart SA, Yu P, Rossell MD, Zhang JX, Ramesh R, et al. Reversible electric control of exchange bias in a multiferroic field-effect device. Nat Mater. 2010;9:756–61.

    • Crossref
    • Export Citation
  • 109.

    Wu SM, Cybart SA, Yi D, Parker JM, Ramesh R, Dynes RC. Full electric control of exchange bias. Phys Rev Lett. 2013;110:67202.

    • Crossref
    • Export Citation
  • 110.

    He X, Wang Y, Wu N, Caruso AN, Vescovo E, Belashchenko KD, et al. Robust isothermal electric control of exchange bias at room temperature. Nat Mater. 2010;9:579–85.

    • Crossref
    • PubMed
    • Export Citation
  • 111.

    Nozaki T, Al-Mahdawi M, Pati SP, Ye S, Shiokawa Y, Sahashi M. Magnetoelectric switching energy in Cr2O3/Pt/Co perpendicular exchange coupled thin film system with small Cr2O3 magnetization. Jpn J Appl Phys. 2017;56:70302.

    • Crossref
    • Export Citation
  • 112.

    Kosub T, Kopte M, Hühne R, Appel P, Shields B, Maletinsky P, et al. Purely antiferromagnetic magnetoelectric random access memory. Nat Commun. 2017;8:13985.

    • Crossref
    • PubMed
    • Export Citation
  • 113.

    Borisov P, Ashida T, Nozaki T, Sahashi M, Lederman D. Magnetoelectric properties of 500-nm Cr2O3 films. Phys Rev B. 2016;93:174415.

    • Crossref
    • Export Citation
  • 114.

    Vu NM, Luo X, Novakov S, Jin W, Nordlander J, Meisenheimer PB, et al. Bulk-like dielectric and magnetic properties of sub 100 nm thick single crystal Cr2O3 films on an epitaxial oxide electrode. Sci Rep. 2020;10:14721.

    • Crossref
    • Export Citation
  • 115.

    Gross I, Akhtar W, Garcia V, Martínez LJ, Chouaieb S, Garcia K, et al. Real-space imaging of non-collinear antiferromagnetic order with a single-spin magnetometer. Nature. 2017;549:252–6.

    • Crossref
    • PubMed
    • Export Citation
  • 116.

    Sando D, Agbelele A, Rahmedov D, Liu J, Rovillain P, Toulouse C, et al. Crafting the magnonic and spintronic response of BiFeO3 films by epitaxial strain. Nat Mater. 2013;12:641–6.

    • Crossref
    • PubMed
    • Export Citation
  • 117.

    Martin LW, Chu YH, Holcomb MB, Huijben M, Yu P, Han SJ, et al. Nanoscale control of exchange bias with BiFeO3 thin films. Nano Lett. 2008;8:2050–5.

    • Crossref
    • PubMed
    • Export Citation
  • 118.

    Huang Y-L, Nikonov D, Addiego C, Chopdekar RV, Prasad B, Zhang L, et al. Manipulating magnetoelectric energy landscape in multiferroics. Nat Commun. 2020;11:2836.

    • Crossref
    • PubMed
    • Export Citation
  • 119.

    Wang JJ, Hu JM, Ma J, Zhang JX, Chen LQ, Nan CW. Full 180° magnetization reversal with electric fields. Sci Rep. 2014;4:7507.

    • Crossref
    • PubMed
    • Export Citation
  • 120.

    Hu J-M, Yang T, Wang J, Huang H, Zhang J, Chen L-Q, et al. Purely electric-field-driven perpendicular magnetization reversal. Nano Lett. 2015;15:616–22.

    • Crossref
    • PubMed
    • Export Citation
  • 121.

    Imamura H, Nozaki T, Yuasa S, Suzuki Y. Deterministic magnetization switching by voltage control of magnetic anisotropy and dzyaloshinskii-moriya interaction under an in-plane magnetic field. Phys Rev Appl. 2018;10:54039.

    • Crossref
    • Export Citation
  • 122.

    Zavaliche F, Zhao T, Zheng H, Straub F, Cruz MP, Yang P-L, et al. Electrically assisted magnetic recording in multiferroic nanostructures. Nano Lett. 2007;7:1586–90.

    • Crossref
    • PubMed
    • Export Citation
  • 123.

    Skumryev V, Laukhin V, Fina I, Martí X, Sánchez F, Gospodinov M, et al. Magnetization reversal by electric-field decoupling of magnetic and ferroelectric domain walls in multiferroic-based heterostructures. Phys Rev Lett. 2011;106:057206.

    • Crossref
    • PubMed
    • Export Citation
  • 124.

    Kani N, Heron JT, Naeemi A. Strain-mediated magnetization reversal through spin-transfer torque. IEEE Trans Magn. 2017;53:4300808.

  • 125.

    Roy K, Bandyopadhyay S, Atulasimha J. Hybrid spintronics and straintronics: A magnetic technology for ultra low energy computing and signal processing. Appl Phys Lett. 2011;99:63108.

    • Crossref
    • Export Citation
  • 126.

    Morelli A, Johann F, Burns SR, Douglas A, Gregg JM. Deterministic switching in bismuth ferrite nanoislands. Nano Lett. 2016;16:5228–34.

    • Crossref
    • PubMed
    • Export Citation
  • 127.

    Prasad B, Huang Y-L, Chopdekar RV, Chen Z, Steffes J, Das S, et al. Ultralow voltage manipulation of ferromagnetism. Adv Mater. 2020;32:2001943.

    • Crossref
    • Export Citation
  • 128.

    Parsonnet E, Huang Y-L, Gosavi T, Qualls A, Nikonov D, Lin -C-C, et al. Toward intrinsic ferroelectric switching in multiferroic BiFeO3. Phys Rev Lett. 2020;125:67601.

    • Crossref
    • Export Citation
  • 129.

    Nagarajan V, Ganpule CS, Li H, Salamanca-Riba L, Roytburd AL, Williams ED, et al. Control of domain structure of epitaxial PbZr0.2Ti0.8O3 thin films grown on vicinal (001) SrTiO3 substrates. Appl Phys Lett. 2001;79:2805–7.

    • Crossref
    • Export Citation
  • 130.

    Chu YH, Cruz MP, Yang CH, Martin LW, Yang PL, Zhang JX, et al. Domain control in multiferroic BiFeO3 through substrate vicinality. Adv Mater. 2007;19:2662–6.

    • Crossref
    • Export Citation
  • 131.

    Xu R, Liu S, Grinberg I, Karthik J, Damodaran AR, Rappe AM, et al. Ferroelectric polarization reversal via successive ferroelastic transitions. Nat Mater. 2015;14:79–86.

    • Crossref
    • PubMed
    • Export Citation
  • 132.

    Chu YH, He Q, Yang CH, Yu P, Martin LW, Shafer P, et al. Nanoscale control of domain architectures in BiFeO3 thin films. Nano Lett. 2009;9:1726–30.

    • Crossref
    • PubMed
    • Export Citation
  • 133.

    Feigl L, Yudin P, Stolichnov I, Sluka T, Shapovalov K, Mtebwa M, et al. Controlled stripes of ultrafine ferroelectric domains. Nat Commun. 2014;5:4677.

    • Crossref
    • PubMed
    • Export Citation
  • 134.

    Haeni JH, Irvin P, Chang W, Uecker R, Reiche P, Li YL, et al. Room-temperature ferroelectricity in strained SrTiO3. Nature. 2004;430:758–61.

    • Crossref
    • PubMed
    • Export Citation
  • 135.

    J H L, Fang L, Vlahos E, Ke X, Jung YW, Kourkoutis LF, et al. A strong ferroelectric ferromagnet created by means of spin-lattice coupling. Nature. 2010;466:954–8.

    • Crossref
    • Export Citation
  • 136.

    Becher C, Maurel L, Aschauer U, Lilienblum M, Magén C, Meier D, et al. Strain-induced coupling of electrical polarization and structural defects in SrMnO3 films. Nat Nanotechnol. 2015;10:661–5.

    • Crossref
    • PubMed
    • Export Citation
  • 137.

    Guo JW, Wang PS, Yuan Y, He Q, Lu JL, Chen TZ, et al. Strain-induced ferroelectricity and spin-lattice coupling in SrMnO3 thin films. Phys Rev B. 2018;97:235135.

    • Crossref
    • Export Citation
  • 138.

    Zhang Y, Wang J, Sahoo MPK, Shimada T, Kitamura T. Strain-induced ferroelectricity and lattice coupling in BaSnO3 and SrSnO3. Phys Chem Chem Phys. 2017;19:26047–55.

    • Crossref
    • PubMed
    • Export Citation
  • 139.

    Sando D, Han MJ, Govinden V, Paull O, Appert F, Carrétéro C, et al. Interfacial strain gradients control nanoscale domain morphology in epitaxial BiFeO3 multiferroic films. Adv Func Mat. 2020;30:2000343.

  • 140.

    Agbelele A, Sando D, Toulouse C, Paillard C, Johnson RD, Rüffer R, et al. Strain and magnetic field induced spin-structure transitions in multiferroic BiFeO3. Adv Mater. 2017;29:1602327.

    • Crossref
    • Export Citation
  • 141.

    Sando D, Appert F, Xu B, Paull O, Burns SR, Carrétéro C, et al. A magnetic phase diagram for nanoscale epitaxial BiFeO3 films. Appl Phys Rev. 2019;6:041404.

    • Crossref
    • Export Citation
  • 142.

    Chen Z, Chen Z, Kuo CY, Tang Y, Dedon LR, Li Q, et al. Complex strain evolution of polar and magnetic order in multiferroic BiFeO3 thin films. Nat Commun. 2018;9:3764.

    • Crossref
    • PubMed
    • Export Citation
  • 143.

    Waterfield Price N, Vibhakar AM, Johnson RD, Schad J, Saenrang W, Bombardi A, et al. Strain Engineering a Multiferroic Monodomain in Thin-Film BiFeO3. Phys Rev Appl. 2019;11:024035.

    • Crossref
    • Export Citation
  • 144.

    Saenrang W, Davidson BA, Maccherozzi F, Podkaminer JP, Irwin J, Johnson RD, et al. Deterministic and robust room-temperature exchange coupling in monodomain multiferroic BiFeO3 heterostructures. Nat Commun. 2017;8:1583.

    • Crossref
    • PubMed
    • Export Citation
  • 145.

    Fong DD, Stephenson GB, Streiffer SK, Eastman JA, Aucielo O, Fuoss PH, et al. Ferroelectricity in ultrathin perovskite films. Science. 2004;304:1650–3.

    • Crossref
    • PubMed
    • Export Citation
  • 146.

    De Luca G, Strkalj N, Manz S, Bouillet C, Fiebig M, Trassin M. Nanoscale design of polarization in ultrathin ferroelectric heterostructures. Nat Commun. 2017;8:1419.

    • Crossref
    • PubMed
    • Export Citation
  • 147.

    Choi KJ, Biegalski M, Li YL, Sharan A, Schubert J, Uecker R, et al. Enhancement of ferroelectricity in strained BaTiO3 thin films. Science. 2004;306:1005–9.

    • Crossref
    • PubMed
    • Export Citation
  • 148.

    Sarott MF, Fiebig M, Trassin M. Tracking ferroelectric domain formation during epitaxial growth of PbTiO3 films. Appl Phys Lett. 2020;117:132901.

    • Crossref
    • Export Citation
  • 149.

    Liu G, Chen J, Lichtensteiger C, Triscone JM, Aguado-Puente P, Junquera J, et al. Positive effect of an internal depolarization field in Ultrathin Epitaxial ferroelectric films. Adv Electron Mater. 2016;2:1500288.

    • Crossref
    • Export Citation
  • 150.

    Lichtensteiger C, Fernandez-Pena S, Weymann C, Zubko P, Triscone JM. Tuning of the depolarization field and nanodomain structure in ferroelectric thin films. Nano Lett. 2014;14:4205–11.

    • Crossref
    • PubMed
    • Export Citation
  • 151.

    Liu Y, Lou X, Bibes M, Dkhil B. Effect of a built-in electric field in asymmetric ferroelectric tunnel junctions. Phys Rev B Condens Matter Mater Phys. 2013;88:1–8.

  • 152.

    Simmons JG. Intrinsic fields in thin insulating films between dissimilar electrodes. Phys Rev Lett. 1963;10:10–12.

    • Crossref
    • Export Citation
  • 153.

    Lichtensteiger C, Weymann C, Fernandez-Pena S, Paruch P, Triscone JM. Built-in voltage in thin ferroelectric PbTiO3 films: the effect of electrostatic boundary conditions. New J Phys. 2016;18:043030.

    • Crossref
    • Export Citation
  • 154.

    Balke N, Ramesh R, Yu P. Manipulating ferroelectrics through changes in surface and interface properties. ACS Appl Mater Interfaces. 2017;9:39736–46.

    • Crossref
    • PubMed
    • Export Citation
  • 155.

    Chen D, Chen Z, He Q, Clarkson JD, Serrao CR, Yadav AK, et al. Interface engineering of domain structures in BiFeO3 thin films. Nano Lett. 2017;17:486–93.

    • Crossref
    • PubMed
    • Export Citation
  • 156.

    Seidel J, Martin LW, He Q, Zhan Q, Chu YH, Rother A, et al. Conduction at domain walls in oxide multiferroics. Nat Mater. 2009;8:229–34.

    • Crossref
    • PubMed
    • Export Citation
  • 157.

    Campanini M, Gradauskaite E, Trassin M, Yi D, Yu P, Ramesh R, et al. Imaging and quantification of charged domain walls in BiFeO3. Nanoscale. 2020;12:9186–93.

    • Crossref
    • PubMed
    • Export Citation
  • 158.

    Tian Y, Wei L, Zhang Q, Huang H, Zhang Y, Zhou H, et al. Water printing of ferroelectric polarization. Nat Commun. 2018;9:3809.

    • Crossref
    • PubMed
    • Export Citation
  • 159.

    Yu P, Luo W, Yi D, Zhang JX, Rossell MD, Yang C-H, et al. Interface control of bulk ferroelectric polarization. Proc Natl Acad Sci. 2012;109:9710–5.

    • Crossref
    • Export Citation
  • 160.

    Yi D, Yu P, Chen YC, Lee HH, He Q, Chu YH, et al. Tailoring Magnetoelectric Coupling in BiFeO3/La0.7Sr0.3MnO3 Heterostructure through the Interface Engineering. Adv Mater. 2019;30:1806335.

  • 161.

    Li L, Jokisaari JR, Zhang Y, Cheng X, Yan X, Heikes C, et al. Control of Domain Structures in Multiferroic Thin Films through Defect Engineering. Adv Mater. 2018;30:1802737.

    • Crossref
    • Export Citation
  • 162.

    Puggioni D, Giovannetti G, Rondinelli JM. Polar metals as electrodes to suppress the critical-thickness limit in ferroelectric nanocapacitors. J Appl Phys. 2018;124:174102.

    • Crossref
    • Export Citation
  • 163.

    Chopdekar RV, Malik VK, Fraile Rodríguez A, Le Guyader L, Takamura Y, Scholl A, et al. Spatially resolved strain-imprinted magnetic states in an artificial multiferroic. Phys Rev B Condens Matter Mater Phys. 2012;86:014408.

    • Crossref
    • Export Citation
  • 164.

    Lahtinen TH, Franke KJ, Dijken SV. Electric-field control of magnetic domain wall motion and local magnetization reversal. Sci Rep. 2012;2:258.

    • Crossref
    • PubMed
    • Export Citation
  • 165.

    You L, Wang B, Zou X, Lim ZS, Zhou Y, Ding H, et al. Origin of the uniaxial magnetic anisotropy in La0.7Sr0.3MnO3 on stripe-domain BiFeO3. Phys Rev B Condens Matter Mater Phys. 2013;88:1–9.

  • 166.

    Streubel R, Köhler D, Schäfer R, Eng LM. Strain-mediated elastic coupling in magnetoelectric nickel/barium-titanate heterostructures. Phys Rev B Condens Matter Mater Phys. 2013;87:054410.

    • Crossref
    • Export Citation
  • 167.

    Brandl F, Franke KJ, Lahtinen TH, Van Dijken S, Grundler D. Spin waves in CoFeB on ferroelectric domains combining spin mechanics and magnonics. Solid State Commun. 2014;198:13–17.

    • Crossref
    • Export Citation
  • 168.

    Fackler SW, Donahue MJ, Gao T, Nero PN, Cheong SW, Cumings J, et al. Local control of magnetic anisotropy in transcritical permalloy thin films using ferroelectric BaTiO3 domains. Appl Phys Lett. 2014;105:212905.

    • Crossref
    • Export Citation
  • 169.

    Wang J, Pesquera D, Mansell R, Van Dijken S, Cowburn RP, Ghidini M, et al. Giant non-volatile magnetoelectric effects via growth anisotropy in Co40Fe40B20 films on PMN-PT substrates. Appl Phys Lett. 2019;114:092401.

    • Crossref
    • Export Citation
  • 170.

    Phillips LC, Cherifi RO, Ivanovskaya V, Zobelli A, Infante IC, Jacquet E, et al. Local electrical control of magnetic order and orientation by ferroelastic domain arrangements just above room temperature. Sci Rep. 2015;5:10026.

    • Crossref
    • PubMed
    • Export Citation
  • 171.

    Franke KJ, Lahtinen TH, Van Dijken S. Field tuning of ferromagnetic domain walls on elastically coupled ferroelectric domain boundaries. Phys Rev B Condens Matter Mater Phys. 2012;85:094423.

    • Crossref
    • Export Citation
  • 172.

    Kim SH, Choi H, No K, Shin SC. Electric-field induced ferromagnetic domain changes in exchange biased Co-BiFeO3 composites. J Phys D Appl Phys. 2010;43:165001.

    • Crossref
    • Export Citation
  • 173.

    Cybart SA, Rossell MD, Wu SM, Zhang JX, Yu P, Ramesh R, et al. Reversible electric control of exchange bias in a multiferroic field-effect device. Nat Mater. 2010;9:756–61.

    • Crossref
    • Export Citation
  • 174.

    Laukhin V, Skumryev V, Martí X, Hrabovsky D, Sánchez F, García-Cuenca MV, et al. Electric-field control of exchange bias in multiferroic epitaxial heterostructures. Phys Rev Lett. 2006;97:227201.

    • Crossref
    • PubMed
    • Export Citation
  • 175.

    Duan CG, Jaswal SS, Tsymbal EY. Predicted magnetoelectric effect in Fe/BaTiO3 multilayers: ferroelectric control of magnetism. Phys Rev Lett. 2006;97:047201.

    • Crossref
    • PubMed
    • Export Citation
  • 176.

    Rondinelli JM, Stengel M, Spaldin NA. Carrier-mediated magnetoelectricity in complex oxide heterostructures. Nat Nanotechnol. 2008;3:46–50.

    • Crossref
    • PubMed
    • Export Citation
  • 177.

    Molegraaf HJ, Hoffman J, Vaz CA, Gariglio S, van der Marel D, Ahn CH, et al. Magnetoelectric effects in complex oxides with competing ground states. Adv Mater. 2009;21:3470–4.

    • Crossref
    • Export Citation
  • 178.

    Cai T, Ju S, Lee J, Sai N, Demkov AA, Niu Q, et al. Magnetoelectric coupling and electric control of magnetization in ferromagnet/ferroelectric/normal-metal superlattices. Phys Rev B Condens Matter Mater Phys. 2009;80:140415(R).

    • Crossref
    • Export Citation
  • 179.

    Brivio S, Cantoni M, Petti D, Bertacco R. Near-room-temperature control of magnetization in field effect devices based on La0.67Sr0.33MnO3 thin films. J Appl Phys. 2010;108:113906.

    • Crossref
    • Export Citation
  • 180.

    Spurgeon SR, Balachandran PV, Kepaptsoglou DM, Damodaran AR, Karthik J, Nejati S, et al. Polarization screening-induced magnetic phase gradients at complex oxide interfaces. Nat Commun. 2015;6:6735.

    • Crossref
    • PubMed
    • Export Citation
  • 181.

    Avula SR, Heidler J, Dreiser J, Vijayakumar J, Howald L, Nolting F, et al. Study of magneto-electric coupling between ultra-thin Fe films and PMN-PT using X-ray magnetic circular dichroism. J Appl Phys. 2018;123:064103.

    • Crossref
    • Export Citation
  • 182.

    Hong X, Posadas A, Ahn CH. Examining the screening limit of field effect devices via the metal-insulator transition. Appl Phys Lett. 2005;86:142501.

    • Crossref
    • Export Citation
  • 183.

    De Luca G, Schoenherr P, Mendil J, Meier D, Fiebig M, Trassin M. Domain-pattern transfer across an artificial magnetoelectric interface. Phys Rev Appl. 2018;10:054030.

  • 184.

    Ghidini M, Mansell R, Maccherozzi F, Moya X, Phillips LC, Yan W, et al. Shear-strain-mediated magnetoelectric effects revealed by imaging. Nat Mater. 2019;18:840–5.

    • Crossref
    • PubMed
    • Export Citation
  • 185.

    Leo N, Carolus V, White JS, Kenzelmann M, Hudl M, Tolédano P, et al. Magnetoelectric inversion of domain patterns. Nature. 2018;560:466–70.

    • Crossref
    • PubMed
    • Export Citation
  • 186.

    Franke KJ, Van de Wiele B, Shirahata Y, Hämälainen SJ, Taniyama T, van Dijken S. Reversible electric-field-driven magnetic domain-wall motion. Phys Rev X. 2015;5:011010.

  • 187.

    Gao Y, Hu JM, Wu L, Nan CW. Dynamic in situ visualization of voltage-driven magnetic domain evolution in multiferroic heterostructures. J Phys Condens Matter. 2015;27:504005.

    • Crossref
    • PubMed
    • Export Citation
  • 188.

    López González D, Shirahata Y, Van de Wiele B, Franke KJ, Casiraghi A, Taniyama T, et al. Electric-field-driven domain wall dynamics in perpendicularly magnetized multilayers. AIP Adv. 2017;7:035119.

    • Crossref
    • Export Citation
  • 189.

    Van De Wiele B, Leliaert J, Franke KJ, Van Dijken S. Electric-field-driven dynamics of magnetic domain walls in magnetic nanowires patterned on ferroelectric domains. New J Phys. 2016;18:033027.

    • Crossref
    • Export Citation
  • 190.

    Hassanpour E, Weber MC, Bortis A, Tokunaga Y, Taguchi Y, Tokura Y, et al. Interconversion of multiferroic domains and domain walls. 2019:arXiv: 1908.06876.

  • 191.

    Meier D. Functional domain walls in multiferroics. J Phys Condens Matter. 2015;27:463003.

    • Crossref
    • PubMed
    • Export Citation
  • 192.

    Gruverman A, Alexe M, Meier D. Piezoresponse force microscopy and nanoferroic phenomena. Nat Commun. 2019;10:1661.

    • Crossref
    • PubMed
    • Export Citation
  • 193.

    Evans DM, Garcia V, Meier D, Bibes M. Domains and domain walls in multiferroics. Phys Sci Rev. 2020;5:20190067.

  • 194.

    Nataf GF, Guennou M, Gregg JM, Meier D, Hlinka J, Salje EK, et al. Domain-wall engineering and topological defects in ferroelectric and ferroelastic materials. Nat Rev Phys. 2020;2:634–648.

  • 195.

    Whyte JR, McQuaid RG, Sharma P, Canalias C, Scott JF, Gruverman A, et al. Ferroelectric domain wall injection. Adv Mater. 2014;26:293–8.

    • Crossref
    • PubMed
    • Export Citation
  • 196.

    McQuaid RG, Campbell MP, Whatmore RW, Kumar A, Marty Gregg J. Injection and controlled motion of conducting domain walls in improper ferroelectric Cu-Cl boracite. Nat Commun. 2017;8:15105.

    • Crossref
    • PubMed
    • Export Citation
  • 197.

    Sharma P, Sando D, Zhang Q, Cheng X, Prosandeev S, Bulanadi R, et al. Conformational domain wall switch. Adv Funct Mater. 2019;29:1807523.

    • Crossref
    • Export Citation
  • 198.

    Whyte JR, Gregg JM. A diode for ferroelectric domain-wall motion. Nat Commun. 2015;6:7361.

    • Crossref
    • PubMed
    • Export Citation
  • 199.

    McGilly LJ, Yudin P, Feigl L, Tagantsev AK, Setter N. Controlling domain wall motion in ferroelectric thin films. Nat Nanotechnol. 2015;10:145–50.

    • Crossref
    • PubMed
    • Export Citation
  • 200.

    Guo EJ, Roth R, Herklotz A, Hesse D, Dörr K. Ferroelectric 180° domain wall motion controlled by biaxial strain. Adv Mater. 2015;27:1615–18.

    • Crossref
    • PubMed
    • Export Citation
  • 201.

    De Luca G, Rossell MD, Schaab J, Viart N, Fiebig M, Trassin M. Domain wall architecture in tetragonal ferroelectric thin films. Adv Mater. 2017;29:1605145.

    • Crossref
    • Export Citation
  • 202.

    Cherifi-Hertel S, Bulou H, Hertel R, Taupier G, Dorkenoo KDH, Andreas C, et al. Non-Ising and chiral ferroelectric domain walls revealed by nonlinear optical microscopy. Nat Commun. 2017;8:15768.

    • Crossref
    • PubMed
    • Export Citation
  • 203.

    Nataf GF, Barrett N, Kreisel J, Guennou M. Raman signatures of ferroic domain walls captured by principal component analysis. J Phys Condens Matter. 2018;30:035902.

    • Crossref
    • PubMed
    • Export Citation
  • 204.

    Hadjimichael M, Zatterin E, Fernandez-Peña S, Leake SJ, Zubko P. Domain wall orientations in ferroelectric superlattices probed with synchrotron X-ray diffraction. Phys Rev Lett. 2018;120:037602.

    • Crossref
    • PubMed
    • Export Citation
  • 205.

    Li D, Huang X, Xiao Z, Chen H, Zhang L, Hao Y, et al. Polar coupling enabled nonlinear optical filtering at MoS2/ferroelectric heterointerfaces. Nat Commun. 2020;11:1422.

    • Crossref
    • PubMed
    • Export Citation
  • 206.

    Meier D, Maringer M, Lottermoser T, Becker P, Bohatý L, Fiebig M. Observation and coupling of domains in a spin-spiral multiferroic. Phys Rev Lett. 2009;102:107202.

    • Crossref
    • Export Citation
  • 207.

    Leo N, Bergman A, Cano A, Poudel N, Lorenz B, Fiebig M, et al. Polarization control at spin-driven ferroelectric domain walls. Nat Commun. 2015;6:6661.

    • Crossref
    • PubMed
    • Export Citation
  • 208.

    Tokunaga Y, Furukawa N, Sakai H, Taguchi Y, Arima TH, Tokura Y. Composite domain walls in a multiferroic perovskite ferrite. Nat Mater. 2009;8:558–62.

    • Crossref
    • Export Citation
  • 209.

    Tokunaga Y, Taguchi Y, Arima TH, Tokura Y. Electric-field-induced generation and reversal of ferromagnetic moment in ferrites. Nat Phys. 2012;8:838–44.

    • Crossref
    • Export Citation
  • 210.

    Matsubara M, Manz S, Mochizuki M, Kubacka T, Iyama A, Aliouane N, et al. Magnetoelectric domain control in multiferroic TbMnO3. Science. 2015;348:1112–15.

    • Crossref
    • PubMed
    • Export Citation
  • 211.

    Geng Y, Lee N, Choi YJ, Cheong SW, Wu W. Collective magnetism at multiferroic vortex domain walls. Nano Lett. 2012;12:6055–9.

    • Crossref
    • PubMed
    • Export Citation
  • 212.

    Xu T, Shimada T, Araki Y, Wang J, Kitamura T. Multiferroic domain walls in ferroelectric PbTiO3 with oxygen deficiency. Nano Lett. 2016;16:454–8.

    • Crossref
    • PubMed
    • Export Citation
  • 213.

    Farokhipoor S, Magén C, Venkatesan S, Íñiguez J, Daumont CJ, Rubi D, et al. Artificial chemical and magnetic structure at the domain walls of an epitaxial oxide . Nature. 2014;515:379–83.

    • Crossref
    • Export Citation
  • 214.

    Logginov AS, Meshkov GA, Nikolaev AV, Nikolaeva EP, Pyatakov AP, Zvezdin AK. Room temperature magnetoelectric control of micromagnetic structure in iron garnet films. Appl Phys Lett. 2008;93:182510.

    • Crossref
    • Export Citation
  • 215.

    Fontcuberta J, Skumryev V, Laukhin V, Granados X, Salje EK. Polar domain walls trigger magnetoelectric coupling. Sci Rep. 2015;5:13784.

    • Crossref
    • PubMed
    • Export Citation
  • 216.

    Salje EK, Ding X. Ferroelastic domain boundary-based multiferroicity. Crystals. 2016;6:163.

    • Crossref
    • Export Citation
  • 217.

    Nataf GF, Guennou M, Kreisel J, Hicher P, Haumont R, Aktas O, et al. Control of surface potential at polar domain walls in a nonpolar oxide. Phys Rev Mater. 2017;1:074410.

    • Crossref
    • Export Citation
  • 218.

    Wei XK, Sluka T, Fraygola B, Feigl L, Du H, Jin L, et al. Controlled charging of Ferroelastic domain walls in oxide ferroelectrics. ACS Appl Mater Interfaces. 2017;9:6539–46.

    • Crossref
    • PubMed
    • Export Citation
  • 219.

    Burton JD, Tsymbal EY. Prediction of electrically induced magnetic reconstruction at the manganite/ferroelectric interface. Phys Rev B Condens Matter Mater Phys. 2009;80:174406.

    • Crossref
    • Export Citation
  • 220.

    McNulty JA, Tran TT, Halasyamani PS, McCartan SJ, MacLaren I, Gibbs AS, et al. An electronically driven improper Ferroelectric: tungsten bronzes as microstructural analogs for the hexagonal manganites. Adv Mater. 2019;31:1903620.

    • Crossref
    • Export Citation
  • 221.

    Moure A. Review and perspectives of Aurivillius structures as a lead-free piezoelectric system. Appl Sci. 2018;8:62.

    • Crossref
    • Export Citation
  • 222.

    Birenbaum AY, Ederer C. Potentially multiferroic Aurivillius phase Bi5FeTi3O15: Cation site preference, electric polarization, and magnetic coupling from first principles. Phys Rev B. 2014;90:214109.

    • Crossref
    • Export Citation
  • 223.

    Zhai X, Grutter AJ, Yun Y, Cui Z, Lu Y. Weak magnetism of Aurivillius-type multiferroic thin films probed by polarized neutron reflectivity. Phys Rev Mater. 2018;2:044405.

    • Crossref
    • Export Citation
  • 224.

    Yang J, Zhu X, Wang F, Song D, Chen L, Yang B. Evolution of structure and ferroelectricity in Aurivillius Bi4Bin−3Fen−3Ti3O3n+3 thin films. J Mater Chem C. 2018;6:8618–27.

    • Crossref
    • Export Citation
  • 225.

    Djani H, Garcia-Castro AC, Tong WY, Barone P, Bousquet E, Picozzi S, et al. Rationalizing and engineering Rashba spin-splitting in ferroelectric oxides. Npj Quantum Mater. 2019;4:51.

    • Crossref
    • Export Citation
  • 226.

    Campanini M, Trassin M, Ederer C, Erni R, Rossell MD. Buried in-plane ferroelectric domains in Fe-Doped single-crystalline aurivillius thin films. ACS Appl Electron Mater. 2019;1:1019–28.

    • Crossref
    • Export Citation
  • 227.

    Zhu L, Ralph DC, Buhrman RA. Highly efficient spin-current generation by the spin hall effect in Au1−xPtx. Phys Rev Appl. 2018;10:31001.

    • Crossref
    • Export Citation
  • 228.

    Zhu L, Zhu L, Shi S, Ralph DC, Buhrman RA. Energy-efficient ultrafast SOT-MRAMs based on low-resistivity spin hall metal Au0.25Pt0.75. Adv Electron Mater. 2020;6:1–7.

  • 229.

    Heron JT 2013 Electric field control of ferromagnetism and magnetic devices using multiferroics PhD Thesis, Univ. California, Berkeley

  • 230.

    Manipatruni S, Nikonov DE, Lin -C-C, Prasad B, Huang Y-L, Damodaran AR, et al. Voltage control of unidirectional anisotropy in ferromagnet-multiferroic system. Sci Adv. 2018;4:eaat4229.

    • PubMed
    • Export Citation
  • 231.

    Binek C, Doudin B. Magnetoelectronics with magnetoelectrics. J Phys Condens Matter. 2005;17:L39–44.

    • Crossref
    • Export Citation
  • 232.

    Dowben PA, Binek C, Zhang K, Wang L, Mei WN, Bird JP, et al. Towards a strong spin-orbit coupling magnetoelectric transistor. IEEE J Explor Solid-State Comput Devices Circuits. 2018;4:1–9.

    • Crossref
    • Export Citation
  • 233.

    Chang S.-C. Inversion Charge Boost and Transient Steep-Slope Induced by Free-Charge-Polarization Mismatch in a Ferroelectric-Metal–Oxide–Semiconductor Capacitor. IEEE J Explor Solid-State Comput Devices Circuits. 2018;4:44–49.

  • 234.

    Pan C, Lou Q, Niemier M, Hu S, Naeemi A. Energy-efficient convolutional neural network based on cellular neural network using beyond-CMOS technologies. IEEE J Explor Solid-State Comput Devices Circuits. 2019;5:85–93.

    • Crossref
    • Export Citation
  • 235.

    Stephan AW, Hu J, Koester SJ. Performance estimate of inverse Rashba-Edelstein magnetoelectric devices for neuromorphic computing. IEEE J Explor Solid-State Comput Devices Circuits. 2019;5:25–33.

    • Crossref
    • Export Citation
  • 236.

    Lesne E, Fu Y, Oyarzun S, Rojas-Sánchez JC, Vaz DC, Naganuma H, et al. Highly efficient and tunable spin-to-charge conversion through Rashba coupling at oxide interfaces. Nat Mater. 2016;15:1261–6.

    • Crossref
    • PubMed
    • Export Citation
  • 237.

    Yu G, Upadhyaya P, Fan Y, Alzate JG, Jiang W, Wong KL, et al. Switching of perpendicular magnetization by spin–orbit torques in the absence of external magnetic fields. Nat Nanotechnol. 2014;9:548–54.

    • Crossref
    • PubMed
    • Export Citation
  • 238.

    Wang Z, Li Z, Wang M, Wu B, Zhu D, Zhao W. Field-free spin–orbit-torque switching of perpendicular magnetization aided by uniaxial shape anisotropy. Nanotechnology. 2019;30:375202.

    • Crossref
    • PubMed
    • Export Citation
  • 239.

    Lau Y-C, Betto D, Rode K, Coey JMD, Stamenov P. Spin–orbit torque switching without an external field using interlayer exchange coupling. Nat Nanotechnol. 2016;11:758–62.

    • Crossref
    • PubMed
    • Export Citation
  • 240.

    Van Den Brink A, Vermijs G, Solignac A, Koo J, Kohlhepp JT, Swagten HJ, et al. Field-free magnetization reversal by spin-hall effect and exchange bias. Nat Commun. 2016;7:1–6.

  • 241.

    Cai K, Yang M, Ju H, Wang S, Ji Y, Li B, et al. Electric field control of deterministic current-induced magnetization switching in a hybrid ferromagnetic/ferroelectric structure. Nat Mater. 2017;16:712–6.

    • Crossref
    • Export Citation
  • 242.

    Nan T, Hu J-M, Dai M, Emori S, Wang X, Hu Z, et al. A strain-mediated magnetoelectric-spin-torque hybrid structure. Adv Funct Mater. 2019;29:1806371.

    • Crossref
    • Export Citation
  • 243.

    Laanait N, Saenrang W, Zhou H, Eom CB, Zhang Z. Dynamic X-ray diffraction imaging of the ferroelectric response in bismuth ferrite. Adv Struct Chem Imaging. 2017;3:11.

    • Crossref
    • PubMed
    • Export Citation
  • 244.

    Liu L, Rojac T, Damjanovic D, Di Michiel M, Daniels J. Frequency-dependent decoupling of domain-wall motion and lattice strain in bismuth ferrite. Nat Commun. 2018;9:1–10.

  • 245.

    Matveyev Y, Negrov D, Chernikova A, Lebedinskii Y, Kirtaev R, Zarubin S, et al. Effect of polarization reversal in ferroelectric TiN/Hf0.5Zr0.5O2/TiN devices on electronic conditions at interfaces studied in operando by hard X-ray photoemission spectroscopy. ACS Appl Mater Interfaces. 2017;9:43370–6.

    • Crossref
    • PubMed
    • Export Citation
  • 246.

    Nordlander J, De Luca G, Strkalj N, Fiebig M, Trassin M. Probing ferroic states in oxide thin films using optical second harmonic generation. Appl Sci. 2018;8:570.

    • Crossref
    • Export Citation
  • 247.

    Gorfman S, Bokov AA, Davtyan A, Reiser M, Xie Y, Ye ZG, et al. Ferroelectric domain wall dynamics characterized with X-ray photon correlation spectroscopy. Proc Natl Acad Sci U S A. 2018;115:E6680–9.

    • Crossref
    • PubMed
    • Export Citation
  • 248.

    Agar JC, Naul B, Pandya S, van der Walt S, Maher J, Ren Y, et al. Revealing ferroelectric switching character using deep recurrent neural networks. Nat Commun. 2019;10:1–11.

  • 249.

    Degen CL. Scanning magnetic field microscope with a diamond single-spin sensor. Appl Phys Lett. 2008;92:24311.

  • 250.

    Maze JR, Stanwix PL, Hodges JS, Hong S, Taylor JM, Cappellaro P, et al. Nanoscale magnetic sensing with an individual electronic spin in diamond. Nature. 2008;455:644–7.

    • Crossref
    • PubMed
    • Export Citation
  • 251.

    Rondin L, Tetienne JP, Hingant T, Roch JF, Maletinsky P, Jacques V. Magnetometry with nitrogen-vacancy defects in diamond. Reports Prog Phys. 2014;77:056503.

  • 252.

    Gross I, Akhtar W, Garcia V, Martínez LJ, Chouaieb S, Garcia K, et al. Real-space imaging of non-collinear antiferromagnetic order with a single-spin magnetometer. Nature. 2017;549:252.

    • Crossref
    • PubMed
    • Export Citation
  • 253.

    Geng Y, Das H, Wysocki AL, Wang X, Cheong S-W, Mostovoy M, et al. Direct visualization of magnetoelectric domains. Nat Mater. 2014;13:163–7.

    • Crossref
    • PubMed
    • Export Citation
  • 254.

    Schoenherr P, Giraldo L, Lilienblum M, Trassin M, Meier D, Fiebig M. Magnetoelectric force microscopy on antiferromagnetic 180° domains in Cr2O3. Materials. 2017;10:1051.

    • Crossref
    • Export Citation
  • 255.

    Fiebig M, Fröhlich D, Sluyterman G, Pisarev RLV. Domain topography of antiferromagnetic Cr2O3 by second-harmonic generation. Appl Phys Lett. 1995;66:2906.

    • Crossref
    • Export Citation
  • 256.

    Chauleau JY, Haltz E, Carrétéro C, Fusil S, Viret M. Multi-stimuli manipulation of antiferromagnetic domains assessed by second-harmonic imaging. Nat Mater. 2017;16:803–7.

    • Crossref
    • PubMed
    • Export Citation
  • 257.

    Denev SA, Lummen TT, Barnes E, Kumar A, Gopalan V. Probing ferroelectrics using optical second harmonic generation. J Am Ceram Soc. 2011;94:2699–727.

    • Crossref
    • Export Citation
  • 258.

    Fiebig M, Pavlov VV, Pisarev RV. Second-harmonic generation as a tool for studying electronic and magnetic structures of crystals: review. J Opt Soc Am B. 2005;22:96.

    • Crossref
    • Export Citation
  • 259.

    Tzschaschel C, Satoh T, Fiebig M. Tracking the ultrafast motion of an antiferromagnetic order parameter. Nat Commun. 2019;10:1–6.

  • 260.

    Stanciu CD, Hansteen F, Kimel AV, Kirilyuk A, Tsukamoto A, Itoh A, et al. All-optical magnetic recording with circularly polarized light. Phys Rev Lett. 2007;99:1–4.

  • 261.

    Lambert CH, Mangin S, Varaprasad BS, Takahashi YK, Hehn M, Cinchetti M, et al. All-optical control of ferromagnetic thin films and nanostructures. Science. 2014;345:1337–40.

    • Crossref
    • PubMed
    • Export Citation
  • 262.

    Manz S, Matsubara M, Lottermoser T, Büchi J, Iyama A, Kimura T, et al. Reversible optical switching of antiferromagnetism in TbMnO3. Nat Photonics. 2016;10:653–6.

    • Crossref
    • Export Citation
  • 263.

    Liou YD, Chiu YY, Hart RT, Kuo CY, Huang YL, Wu YC, et al. Deterministic optical control of room temperature multiferroicity in BiFeO3 thin films. Nat Mater. 2019;18:580–7.

    • Crossref
    • PubMed
    • Export Citation
  • 264.

    Yang MM, Alexe M. Light-induced reversible control of ferroelectric polarization in BiFeO3. Adv Mater. 2018;30:1704908.

    • Crossref
    • Export Citation
  • 265.

    Kundys B, Viret M, Colson D, Kundys DO. Light-induced size changes in BiFeO3 crystals. Nat Mater. 2010;9:803–5.

    • Crossref
    • PubMed
    • Export Citation
  • 266.

    Vats G, Bai Y, Zhang D, Juuti J, Seidel J. Optical control of ferroelectric domains: nanoscale insight into macroscopic observations. Adv Opt Mater. 2019;7:1800858.

    • Crossref
    • Export Citation
  • 267.

    Rubio-Marcos F, Ochoa DA, Del Campo A, García MA, Castro GR, Fernández JF, et al. Reversible optical control of macroscopic polarization in ferroelectrics. Nat Photonics. 2018;12:29–32.

    • Crossref
    • Export Citation
  • 268.

    Stoica VA, Laanait N, Dai C, Hong Z, Yuan Y, Zhang Z, et al. Optical creation of a supercrystal with three-dimensional nanoscale periodicity. Nat Mater. 2019;18:377–83.

    • Crossref
    • PubMed
    • Export Citation
  • 269.

    Yang M, Kim DJ, Alexe M. Flexo-photovoltaic effect. Science. 2018;907:904–7.

  • 270.

    Chu K, Jang BK, Sung JH, Shin YA, Lee ES, Song K, et al. Enhancement of the anisotropic photocurrent in ferroelectric oxides by strain gradients. Nat Nanotechnol. 2015;10:972–9.

    • Crossref
    • PubMed
    • Export Citation
  • 271.

    Matzen S, Fusil S. Domains and domain walls in multiferroics. Comptes Rendus Phys. 2015;16:227–40.

    • Crossref
    • Export Citation
Purchase article
Get instant unlimited access to the article.
$42.00
Log in
Already have access? Please log in.


or
Log in with your institution

Journal + Issues

Search