Intelligente Eindämmungsstrategien gegen Covid-19: Die Rolle von Künstlicher Intelligenz und Big Data

Wim Naudé 1
  • 1 Maastricht School of Management, Maastricht, Netherlands
Wim Naudé

Zusammenfassung

Die Covid-19-Pandemie ist eine Gesundheits- und eine Wirtschaftskrise. Die politischen Reaktionen auf beide sind aufgrund der durch fehlende Daten verursachten Unsicherheit nicht optimal. Der Mangel an Daten schränkt den Einsatz von Künstlicher Intelligenz (KI) und die Genauigkeit epidemiologischer Modelle ein. Infolgedessen ist die Künstliche Intelligenz noch nicht in der Lage, bei der Vorhersage, dem Tracking und der Diagnose von Covid-19-Infektionen wirklich zu helfen. Der Mangel an Trainingsdaten für die KI schränkt die Verwendung von datenschutzsensitiven Tracing-Apps weiter ein. Wim Naudé kommt zu dem Schluss, dass das Sammeln ausreichender und geeigneter, unverzerrter Daten, gewonnen auch aus Apps und groß angelegten diagnostischen Tests, eine Voraussetzung für die Verbesserung der Strategien zur Bewältigung der Zwillingskrisen ist. Angesichts der exorbitanten wirtschaftlichen Kosten der bisher angewandten ziemlich groben Eindämmungsmaßnahmen werden „intelligente“ Eindämmungsstrategien, die auf einer besseren Datenanalyse beruhen, die Wiederaufnahme der wirtschaftlichen Tätigkeit ermöglichen und verhindern, dass es zu weiteren Infektionswellen kommt. Den Datenschutz zu garantieren und öffentliches Vertrauen zu den Datenanalyse- und KI-Systemen intelligenter Eindämmungsstrategien aufzubauen, ist jetzt noch dringlicher als je zuvor.

  • Adam, D. (2020), Modelling the impact: The simulations driving the world’s response to Covid-19, Nature 580, S. 316–18.

  • Akhtar, M., M. Kraemer und L. Gardner (2019), A dynamic neural network model for predicting risk of Zika in real-time, BMC Medicine 17 (171).

  • Amanat, F. und F. Krammer (2020), SARS-CoV-2 vaccines: Status report, Immunity 52(4), S. 583–89.

  • Anderson, R. M., H. Heesterbeek, D. Klinkenberg und T. D. Hollingsworth (2020), How will country-based mitigation measures influence the course of the Covid-19 epidemic? The Lancet, 395, S. 931–34.

  • Atkeson, A. (2020), What will be the economic impact of Covid-19 in the US? Rough estimates of disease scenarios, NBER Working Paper 26867.

  • Ballester, J., J. M. Robine, F. R. Herrmann und X. Rodó (2019), Effect of the Great Recession on regional mortality trends in Europe, Nature Communications 10(1), 679.

  • Barrett, S. (2007), Why Cooperate? The Incentive to Supply Global Public Goods, Oxford, Oxford University Press.

    • Crossref
    • Export Citation
  • Beck, B., B. Shin, Y. Choi, S. Park und K. Kang (2020), Predicting commercially available antiviral drugs that may act on the novel Coronavirus (2019-nCoV), Wuhan, China, through a drug-target interaction deep learning model, bioRxiv, 2. Februar.

  • Bogoch, I., A. Watts, A. Thomas-Bachli, C. Huber, M. Kraemer und K. Khan (2020), Pneumonia of unknown aetiology in Wuhan, China: Potential for international spread via commercial air travel, Journal of Travel Medicine 27(2), S. 1–3.

  • Bullock, J., A. Luccioni, K. H. Pham, C. S. N. Lam und M. Luengo-Oroz (2020), Mapping the landscape of artificial intelligence applications against Covid-19, ArXiv, online verfügbar unter https://arxiv.org/abs/2003.11336v1.

  • Chen, J. et al. (2020), Deep learning-based model for detecting 2019 novel Coronavirus pneumonia on high-resolution computed tomography: A prospective study, medRxiv, 1. März.

  • Chun, A. (2020), In a time of coronavirus, Chinas investment in AI is paying off in a big way, South China Morning Post vom 18. März.

  • Dewatripont, M., M. Goldman, E. Muraille und J.-P. Platteau (2020), Rapidly identifying workers who are immune to Covid-19 and virus-free is a priority for restarting the economy, VoxEU.org.

  • Dowd, J. B. et al. (2020), Demographic science aids in understanding the spread and fatality rates of Covid-19, Proceedings of the National Academy of Sciences.

  • Eichenbaum, M. S., S. Rebelo und M. Trabandt (2020), The macroeconomics of epidemics, NBER Working Paper 26882.

  • Engler, A. (2020), A guide to healthy skepticism of artificial intelligence and coronavirus, The Brookings Institution, verfügbar unter https://www.brookings.edu/research/a-guide-to-healthy-skepticism-of-artificial-intelligence-and-coronavirus/.

  • Farboodi, M., R. Mihet, T. Philippon und L. Veldkamp (2019), Big data and firm dynamics, NBER Working Paper 25515.

  • Feldstein, S. (2019), The global expansion of AI surveillance, Carnegie Endowment for International Peace Working Paper.

  • Ferguson et al. (2020), Report 9: Impact of non-pharmaceutical interventions (NPIs) to reduce Covid-19 mortality and healthcare demand, Spiral, online verfügbar unter https://spiral.imperial.ac.uk:8443/handle/10044/1/77482.

  • Ferretti, L. et al. (2020), Quantifying SARS-CoV-2 transmission suggests epidemic control with digital contact tracing, Science, 31. März.

  • Gershgorn, D. (2020), We mapped how the Coronavirus is driving new surveillance programs around the world, Medium: OneZero, 13. April.

  • Grünwald, E., D. Antons und T. Salge (2020), Covid-19 Evidence Navigator, Institute for Technology and Innovation Management, RWTH Aachen.

  • Gopinath, G. (2020), The great lockdown: Worst economic downturn since the Great Depression, IMF Blog, 14. April.

  • Hinton, G., S. Osindero und T.-W. The (2006), A fast learning algorithm for deep belief nets, Neural Computation 18, S. 1527–54.

  • Hinton, G. und R. Salakhutdinov (2006), Reducing the dimensionality of data with neural networks, Science 313, S. 504–07.

  • Hollister, M. (2020), AI can help with the Covid-19 crisis – but the right human input is key, World Economic Forum, 30. März.

  • Huang, Y., M. Sun und Y. Sui (2020), How digital contact tracing slowed Covid-19 in East Asia, Harvard Business Review, 15. April.

  • Ienca, M. und E. Vayena (2020), On the responsible use of digital data to tackle the Covid- 19 pandemic, Nature Medicine, 27. März.

  • Jelnov, P. (2020), Confronting Covid-19 myths: Morbidity and mortality, GLO Discussion Paper 516.

  • Jiang, X. et al. (2020), Towards an Artificial Intelligence framework for data-driven prediction of Coronavirus clinical severity, Computers, Materials and Continua 63(1), S. 537–51.

  • Kermack, W. O. und A. G. McKendrick (1927), A contribution to the mathematical theory of epidemics, Proceedings of the Royal Society of London A 115 (772), S. 700–21.

  • Kreuzhuber, K. (2020), How AI, big data and machine learning can be used against the Coronavirus, ARS Electronica Blog, 19. März.

  • Lazer, D., R. Kennedy, G. King und A. Vespignani (2014), The parable of Google flu: Traps in big data analysis, Science 343(6176), S. 1203–05.

  • Li, R. et al. (2020), Substantial undocumented infection facilitates the rapid dissemination of novel Coronavirus (SARS-CoV2), Science, 16. März.

  • Lourenço, J. et al. (2020), Fundamental principles of epidemic spread highlight the immediate need for large-scale serological surveys to assess the stage of the SARS-CoV-2 epidemic, medRxiv preprint.

  • Maier, B. und D. Brockmann (2020), Effective containment explains sub-exponential growth in confirmed cases of recent Covid-19 outbreak in mainland China, medRxiv, 20. Februar.

  • McKibbin, W. und F. Roshen (2020), The global macroeconomic impacts of Covid-19: Seven scenarios, Brookings Institution, online verfügbar unter https://www.brookings.edu/research/the-global-macroeconomic-impacts-of-Covid-19-seven-scenarios/.

  • McNeil, D. (2020), Restrictions are slowing Coronavirus infections, new data suggest, The New York Times vom 30. März.

  • Moor, J. (2006), The Dartmouth College Artificial Intelligence conference: The next fifty years, AI Magazine 27(4), S. 87–91.

  • Naudé, W. (2019), The race against the robots and the fallacy of the giant cheesecake: Immediate and imagined impacts of Artificial Intelligence, IZA Discussion Paper 12218.

  • Naudé, W. (2020a), Artificial Intelligence vs. Covid-19: Limitations, constraints and pitfalls, AI & Society, 28. April.

  • Naudé, W. (2020b), Artificial Intelligence against Covid-19: An early review, IZA Discussion Paper 13110.

  • Naudé, W. (2020c), Artificial Intelligence, Covid-19, and developing countries: Priorities and trade-offs, UNU-WIDER Background Note.

  • New Scientist (2017), Machines that Think, London, John Murray Learning.

  • O’Neill, P. H. (2020a), Apple and Google are building coronavirus tracking into iOS and Android, MIT Technology Review, 10. April.

  • O’Neill, P. H. (2020b), Bluetooth contact tracing needs bigger, better data, MIT Technology Review, 22. April.

  • Petropoulos, G. (2020), Artificial Intelligence in the fight against Covid-19, Bruegel, 23. März.

  • Razavian, A. S. (2020), When would Covid19 be over from a data science perspective, and what’s the fatality rate? Medium, 6. April.

  • Reardon, J. et al. (2019), 50 ways to leak your data: An exploration of apps’ circumvention of the Android permissions system, login Usenix Mag. 44.

  • Regalado, A. (2020), A Coronavirus vaccine will take at least 18 months if it works at all, MIT Technology Review, 10. März.

  • Ross, C. und R. Robbins (2020), Debate flares over using AI to detect Covid-19 in lung scans, StatPlus, 30. März.

  • Rowan, I. (2020), What happens to AI when the world stops (Covid-19)?, Medium: Towards Data Science, 31. März.

  • Sanche S. et al. (2020), High contagiousness and rapid spread of severe acute respiratory syndrome coronavirus 2, Emerging Infectious Diseases 26(7).

  • Sanderson, P. (2020), Privacy and pandemics: The role of mobile apps, Future of Privacy Forum, 22. April.

  • Silver, D. et al. (2018), A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play, Science 362(6419), S. 1140–44.

  • Simpson, E. und A. Conner (2020), Digital contact tracing to contain the Coronavirus, Center for American Progress, 22. April.

  • Song, P. et al. (2020), An epidemiological forecast model and software assessing interventions on Covid-19 epidemic in China, medRxiv, 3. März.

  • Stebbing, J. et al. (2020), Covid-19: Combining antiviral and anti-inflammatory treatments, The Lancet 20, S. 400–01.

  • Tegmark, M. (2017), Life 3.0: Being Human in the Age of Artificial Intelligence, New York, Knopf Doubleday Publishing Group.

  • Vanderslott, S., A. Pollard und T. Thomas (2020), Coronavirus vaccine: Here are the steps it will need to go through during development, The Conversation, 30. März.

  • Wang, L. und A. Wong (2020), Covid-Net: A tailored deep convolutional neural network design for detection of Covid-19 cases from chest radiography images, arXiv, 22. März.

  • World Intellectual Property Organization – WIPO (2019), Technology Trends 2019: Artificial Intelligence, Genf.

  • Yan, W. (2020), Coronavirus tests science’s need for speed limits, New York Times vom 14. April (mit Update am 21. April).

  • Yan, L. et al. (2020), Prediction of criticality in patients with severe Covid-19 infection using three clinical features: A machine learning-based prognostic model with clinical data in Wuhan, medRxiv, 3. März.

Purchase article
Get instant unlimited access to the article.
$42.00
Log in
Already have access? Please log in.


or
Log in with your institution

Journal + Issues

Among economic journals, this publication has a “bridging” function, as it features content written by economists for researchers in the field and for non-specialists, including professionals with a background in economics who want to keep up to date with the latest research.

Search