Unavoidable decoherence in the quantum control of an unknown state

D. Kielpinski 1 , 2 , R.A. Briggs 2 , 3 , and H.M. Wiseman 1 , 2 , 4
  • 1 Centre for Quantum Dynamics, Griffith University, Nathan QLD 4111, Australia
  • 2 School of Biomolecular and Physical Sciences, Griffith University, Nathan QLD 4111, Australia
  • 3 School of Philosophy, Australian National University, Canberra ACT 0200, Australia
  • 4 ARC Centre of Excellence for Quantum Computation and Communication Technology, Griffith University, Nathan QLD 4111, Australia


A common objective for quantum control is to force a quantum system, initially in an unknown state, into a particular target subspace. We show that if the subspace is required to be a decoherence-free subspace of dimension greater than 1, then such control must be decoherent. That is, it will take almost any pure state to a mixed state. We make no assumptions about the control mechanism, but our result implies that for this purpose coherent control offers no advantage, in principle, over the obvious measurement-based feedback protocol.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • H. M. Wiseman and G. J. Milburn, Quantum Measurement and Control (Cambridge University Press, Cambridge, UK, 2010).

  • K. Khodjasteh, D. A. Lidar, and L. Viola, Phys. Rev. Lett. 104, 090501 (2010).

  • J. Kerckhoff, H. I. Nurdin, D. S. Pavlichin, and H. Mabuchi, Phys. Rev. Lett. 105, 040502 (2010).

  • M. F. Santos, M. Terra Cunha, R. Chaves, and A. R. R. Carvalho, Phys. Rev. Lett. 108, 170501 (2012).

  • R. Vijay, C. Macklin, D. H. Slichter, S. J. Weber, K. W. Murch, R. Naik, A. N. Korotkov, and I. Siddiqi, Nature 490, 77 (2012).

  • G. Xiang, B. Higgins, D. Berry, H. Wiseman, and G. Pryde, Nature Photonics 5, 43 (2010).

  • H. Yonezawa, D. Nakane, T. A. Wheatley, K. Iwasawa, S. Takeda, H. Arao, K. Ohki, K. Tsumura, D. W. Berry, T. C. Ralph, et al., Science 337, 1514 (2012).

  • C. Sayrin, I. Dotsenko, X. Zhou, B. Peaudecerf, T. Rybarczyk, S. Gleyzes, P. Rouchon, M. Mirrahimi, H. Amini, M. Brune, et al., Nature 477, 73 (2011).

  • L. M. Norris, C. M. Trail, P. S. Jessen, and I. H. Deutsch, Phys. Rev. Lett. 109, 173603 (2012).

  • R. I. Karasik and H. M. Wiseman, Phys. Rev. Lett. 106, 020406 (2011).

  • M. Roth, L. Guyon, J. Roslund, V. Boutou, F. Courvoisier, J.-P. Wolf, and H. Rabitz, Phys. Rev. Lett. 102, 253001 (2009).

  • H. M. Wiseman and G. J. Milburn, Phys. Rev. A 49, 4110 (1994).

  • S. Lloyd, Phys. Rev. A 62, 022108 (2000).

  • P. Zanardi and M. Rasetti, Phys. Rev. Lett. 79, 3306 (1997).

  • D. Lidar, I. Chuang, and K. Whaley, Phys. Rev. Lett. 81, 2594 (1998).

  • J. Pearl, Causality: Models, Reasoning, and Inference (Cambridge University Press, 2000).

  • B. Skyrms, Causal Necessity (Yale University Press, 1980), chap. IIC. The Role of Causal Factors in Rational Decision, pp. 128–139.

  • A. Gibbard, in Ifs: Conditionals, Belief, Decision, Chance, and Time, edited by S. R. Harper, W. L. and G. Pearce (D. Reidel, Dordrecht, 1980).

  • R. Stalnaker, in Studies in Logical Theory (Blackwell, Oxford, 1968), vol. 2 of American Philosophical Quarterly Monograph Series.

  • S. Bolognani and F. Ticozzi, IEEE Trans. Autom. Control 55, 2721 (2010).

  • G. Milburn, Philos. Trans. R. Soc. A 370, 4469 (2012).


Journal + Issues