Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access May 12, 2016

Phase estimation with squeezed single photons

  • Stefano Olivares EMAIL logo , Maria Popovic and Matteo G. A. Paris

Abstract

We address the performance of an interferometric setup in which a squeezed single photon interferes at a beam splitter with a coherent state. Our analysis in based on both the quantum Fisher information and the sensitivity when a Mach-Zehnder setup is considered and the difference photocurrent is detected at the output. We compare our results with those obtained feeding the interferometer with a squeezed vacuum (with the same squeezing parameter of the squeezed single photon) and a coherent state in order to have the same total number of photons circulating in the interferometer. We find that for fixed squeezing parameter and total number of photons there is a threshold of the coherent amplitude interfering with the squeezed single photon above which the squeezed single photons outperform the performance of squeezed vacuum (showing the highest quantum Fisher information). When the difference photocurrent measurement is considered, we can always find a threshold of the squeezing parameter (given the total number of photons and the coherent amplitude) above which squeezed single photons can be exploited to reach a better sensitivity with respect to the use of squeezed vacuum states also in the presence of non unit quantum efficiency.

References

[1] M. Kacprowicz, R. Demkowicz-Dobrzanski, W. Wasilewski, K. Banaszek, and I. A. Walmsley, “Experimental quantum-enhanced estimation of a lossy phase shift”, Nature Phot. 4, 357 (2010).Search in Google Scholar

[2] J. Abadie, et al. (the LIGO Scientific Collaboration), A gravitational wave observatory operating beyond the quantum shot-noise limit, Nat. Phys. 7, 962 (2011).Search in Google Scholar

[3] R. Demkowicz-Dobrzanski, K. Banaszek, and R. Schnabel, “Fundamental quantum interferometry bound for the squeezed-light-enhanced gravitational wave detector GEO 600”, Phys. Rev. A 88, 041802(R) (2013).10.1103/PhysRevA.88.041802Search in Google Scholar

[4] I. Ruo Berchera, I. P. Degiovanni, S. Olivares, and M. Genovese, “Quantum light in coupled interferometers for quantum gravity tests”, Phys. Rev. Lett. 110, 213601 (2013).Search in Google Scholar

[5] I. Ruo-Berchera, I. P. Degiovanni, S. Olivares, N. Samantaray, P. Traina, and M. Genovese, “One- and two-mode squeezed light in correlated interferometry”, Phys. Rev. A 92, 053821 (2015).10.1103/PhysRevA.92.053821Search in Google Scholar

[6] M. G. A. Paris, “Small amount of squeezing in high-sensitive realistic interferometry”, Phys. Lett A 201, 132 (1995)10.1016/0375-9601(95)00235-USearch in Google Scholar

[7] L. Pezzé, and A. Smerzi, “Mach-Zehnder Interferometry at the Heisenberg Limit with Coherent and Squeezed-Vacuum Light”, Phys. Rev. Lett. 100, 073601 (2008).Search in Google Scholar

[8] S. Olivares, and M. G. A. Paris, “Optimized Interferometry with Gaussian States”, Optics Spectr. 103, 231 (2007).Search in Google Scholar

[9] M. D. Lang, and C. M. Caves, “Optimal Quantum-Enhanced Interferometry Using a Laser Power Source”, Phys. Rev. Lett. 111, 173601 (2013).Search in Google Scholar

[10] M. D. Lang, and C. M. Caves, “Optimal quantum-enhanced interferometry”, Phys. Rev. A 90, 025802 (2014).10.1103/PhysRevA.90.025802Search in Google Scholar

[11] C. Sparaciari, S. Olivares, and M. G. A. Paris, “Bounds to precision for quantum interferometry with Gaussian states and operations”, J. Opt. Soc. Am. B 32, 1354 (2015).10.1364/JOSAB.32.001354Search in Google Scholar

[12] R. Demkowicz-Dobrzański, M. Jarzyna, and J. Kołodynski, “Quantum Limits in Optical Interferometry”, Progress in Optics 60, 345 (2015).10.1016/bs.po.2015.02.003Search in Google Scholar

[13] C. Sparaciari, S. Olivares, and M. G. A. Paris, “Gaussian-state interferometry with passive and active elements”, Phys. Rev. A 93, 023810 (2016).10.1103/PhysRevA.93.023810Search in Google Scholar

[14] P. Sekatski, N. Sangouard, M. Stobinska, F. Bussières, M. Afzelius, and N. Gisin, “Proposal for exploring macroscopic entanglement with a single photon and coherent states”, Phys. Rev. A 86, 060301(R) (2012).10.1103/PhysRevA.86.060301Search in Google Scholar

[15] C. Vitelli, N. Spagnolo, L. Toffoli, F. Sciarrino, and F. De Martini, “Enhanced resolution of lossy interferometry by coherent amplification of single photons”, Phys. Rev. Lett. 105, 113602 (2010)10.1103/PhysRevLett.105.113602Search in Google Scholar PubMed

[16] J. Wenger, R. Tualle-Bouri, and P. Grangier, “Non-Gaussian Statistics from Individual Pulses of Squeezed Light”, Phys. Rev. Lett. 92 153601 (2004).10.1103/PhysRevLett.92.153601Search in Google Scholar PubMed

[17] S. Olivares, and M. G. A. Paris, “Squeezed Fock state by inconclusive photon subtraction”, J. Opt. B: Quantum Semiclass. Opt. 7, S616 (2005).10.1088/1464-4266/7/12/025Search in Google Scholar

[18] M. G. A. Paris, “Quantum estimation for quantum technology”, Int. J. Quant. Inf. 7, 125 (2009).Search in Google Scholar

[19] C.W. Helstrom, Quantum Detection and Estimation Theory (Academic Press, New York, 1976).Search in Google Scholar

[20] D. C. Brody, and L. P. Hughston, “Statistical geometry in quantum mechanics”, Proc. Roy. Soc. Lond. A 454, 2445 (1998); “Geometrization of statistical mechanics”, Proc. Roy. Soc. Lond. A 455, 1683 (1999).Search in Google Scholar

[21] S. L. Braunstein, and C. M. Caves, “Statistical distance and the geometry of quantum states”, Phys. Rev. Lett. 72, 3439 (1994).Search in Google Scholar

[22] S. L. Braunstein, C. M. Caves, and G. J. Milburn, “Generalized uncertainty relations: Theory, examples, and Lorentz invariance”, Ann. Phys. 247, 135 (1996).Search in Google Scholar

[23] A. Ferraro, S. Olivares, and M. G. A. Paris, Gaussian States in Quantum Information (Bibliopolis, Napoli, 2005).Search in Google Scholar

Received: 2016-4-1
Accepted: 2016-4-21
Published Online: 2016-5-12
Published in Print: 2016-1-1

© 2016 Stefano Olivares et al., published by De Gruyter Open

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 28.3.2024 from https://www.degruyter.com/document/doi/10.1515/qmetro-2016-0007/html
Scroll to top button