Determination of complex formation constants of neptunium(V) with propionate and lactate in 0.5–2.6 m NaCl solutions at 22–60°C using a solvent extraction technique

Aleksandr N. Vasiliev 1 , 2 , 3 , Nidhu L. Banik 1 , 4 , Rémi Marsac 1 , 5 , Stepan N. Kalmykov 2 , and Christian M. Marquardt 6
  • 1 Karlsruher Institut für Technologie (KIT), Institut für Nukleare Entsorgung, P.O. Box 3640, 76021 Karlsruhe, Germany
  • 2 Radiochemistry Division, Chemistry Department, Lomonosov Moscow State University, Moscow 119992, Russia
  • 3 Institute for Nuclear Research, Russian Academy of Sciences, Moscow 117312, Russia
  • 4 JRC-KARLSRUHE, G.II.6 – Nuclear Safeguards and Forensics, European Commission, P.O. Box 2340, D-76125 Karlsruhe, Germany
  • 5 Univ Rennes, CNRS, Géosciences Rennes – UMR 6118, F-35000 Rennes, France
  • 6 Karlsruher Institut für Technologie (KIT), Institut für Nukleare Entsorgung, P.O. Box 3640, 76021 Karlsruhe, Germany
Aleksandr N. Vasiliev
  • Karlsruher Institut für Technologie (KIT), Institut für Nukleare Entsorgung, P.O. Box 3640, 76021 Karlsruhe, Germany
  • Radiochemistry Division, Chemistry Department, Lomonosov Moscow State University, Moscow 119992, Russia
  • Institute for Nuclear Research, Russian Academy of Sciences, Moscow 117312, Russia
  • Search for other articles:
  • degruyter.comGoogle Scholar
, Nidhu L. Banik
  • Karlsruher Institut für Technologie (KIT), Institut für Nukleare Entsorgung, P.O. Box 3640, 76021 Karlsruhe, Germany
  • JRC-KARLSRUHE, G.II.6 – Nuclear Safeguards and Forensics, European Commission, P.O. Box 2340, D-76125 Karlsruhe, Germany
  • Search for other articles:
  • degruyter.comGoogle Scholar
, Rémi Marsac
  • Karlsruher Institut für Technologie (KIT), Institut für Nukleare Entsorgung, P.O. Box 3640, 76021 Karlsruhe, Germany
  • Univ Rennes, CNRS, Géosciences Rennes – UMR 6118, F-35000 Rennes, France
  • Search for other articles:
  • degruyter.comGoogle Scholar
, Stepan N. Kalmykov
  • Radiochemistry Division, Chemistry Department, Lomonosov Moscow State University, Moscow 119992, Russia
  • Search for other articles:
  • degruyter.comGoogle Scholar
and Christian M. Marquardt
  • Corresponding author
  • Karlsruher Institut für Technologie (KIT), Institut für Nukleare Entsorgung, P.O. Box 3640, 76021 Karlsruhe, Germany
  • Email
  • Search for other articles:
  • degruyter.comGoogle Scholar

Abstract

Natural clay rocks like Opalinus (OPA) and Callovo-Oxfordian (COx) clay rock are considered as potential host rocks for deep geological disposal of nuclear waste. However, small organic molecules such as propionate and lactate exist in clay rock pore water and might enhance Np mobility through a complexation process. Therefore, reliable complex formation data are required in the frame of the Safety Case for a nuclear waste repository. A solvent extraction technique was applied for the determination of NpO2+ complexation with propionate and lactate. Extraction was conducted from isoamyl alcohol solution containing 10−3 M TTA and 5 · 10−4 M 1,10-phenanthroline. Experiments were performed in 0.5–2.6 m NaCl solutions at temperatures ranging from 22 to 60 °C. Formation of 1:1 Np(V) complexes for propionate and lactate was found under the studied conditions. The SIT approach was applied to calculate equilibrium constants β°(T) at zero ionic strength from the experimental data. Log β°(T) is found linearly correlated to 1/T for propionate and lactate, evidencing that heat capacity change is near 0. Molal reaction enthalpy and entropy (ΔrHm and ΔrSm) could therefore be derived from the integrated van’t Hoff equation. Data for log β° (298.15 K) are in agreement with literature values for propionate and lactate. Np(V) speciation was calculated for concentrations of acetate, propionate and lactate measured in clay pore waters of COx. In addition, the two site protolysis non-electrostatic surface complexation and cation exchange (2SPNE SC/CE) model was applied to quantitatively describe the influence of Np(V) complexation on its uptake on Na-illite, a relevant clay mineral of OPA and COx.

  • 1.

    Kim, J. I.: Chemical behaviour of transuranic elements in natural aquatic systems, In: A. J. Freeman (Ed.), Handbook on the Physics and Chemistry of the Actinides (1986), Elsevier Science Publishers, B. V., Amsterdam, p. 413.

  • 2.

    Choppin, G. R., Rao, L. F.: Complexation of pentavalent and hexavalent actinides by fluoride. Radiochim. Acta 37, 143 (1984).

  • 3.

    Forbes, T. Z., Wallace, C., Burns, P. C.: Neptunyl compounds: polyhedron geometries, bond-valence parameters, and structural hierarchy. Can. Mineral. 46, 1623 (2008).

    • Crossref
    • Export Citation
  • 4.

    ONDRAF/NIRAS, SAFIR 2: Safety assessment and feasibility interim report, NIROND-2001-06 E, ONDRAF/NIRAS, Brussels/Belgium (2001).

  • 5.

    OECD: Safety of geological disposal of high-level and longlived radioactive waste in France – an international peer review of the “Dossier 2005 Argile” concerning disposal in the Callovo-Oxfordian formation, NEA No. 6178, OECD Organization for economic cooperation and development (2006).

  • 6.

    Hoth, P., Wirth, H., Reinhold, K., Bräuer, V., Krull, P., Feldrappe, H.: Endlagerung radioaktiver Abfälle in tiefen geologischen Formationen Deutschlands – Untersuchung und Bewertung von Tongesteinsformationen, BGR Bundesanstalt für Geowissenschaften und Rohstoffe, Hannover/Germany (2007).

  • 7.

    Courdouan, A., Christl, I., Meylan, S., Wersin, P., Kretzschmar, R.: Isolation and characterization of dissolved organic matter from the Callovo–Oxfordian formation. Appl. Geochem. 22, 1537 (2007).

    • Crossref
    • Export Citation
  • 8.

    Courdouan, A., Christl, I., Meylan, S., Wersin, P., Kretzschmar, R.: Characterization of dissolved organic matter in anoxic rock extracts and in situ pore water of the Opalinus Clay. Appl. Geochem. 22, 2926 (2007).

    • Crossref
    • Export Citation
  • 9.

    Geological disposal of radioactive waste: technological implications for retrievability, IAEA nuclear energy series, NW-T-1.19, ISSN 1995-7807, International Atomic Energy Agency, Vienna, Austria (2009).

  • 10.

    Askarieh, M. M., Hansford, M. I., Staunton, S., Rees, L. V. C.: Complexation of Np (V) in aqueous solutions (No. DOE-HMIP-RR-92.018). Department of the Environment, London, UK (1992).

  • 11.

    Vasiliev, A. N., Banik, N. L., Marsac, R., Froehlich, D. R., Rothe, J., Kalmykov, S. N., Marquardt, C. M.: Np(V) complexation with propionate in 0.5–4 M NaCl solutions at 20–85 °C. Dalton Trans. 44, 3837 (2015).

    • Crossref
    • PubMed
    • Export Citation
  • 12.

    Moore, R. C., Borkowski, M., Bronikowski, M. G., Chen, J., Pokrovsky, O. S., Xia, Y., Choppin, G. R.: Thermodynamic modeling of actinide complexation with acetate and lactate at high ionic strength. J. Sol. Chem. 28, 521 (1999).

    • Crossref
    • Export Citation
  • 13.

    Tochiyama, O., Inoue, Y., Narita, S.: Complex formation of Np(V) with various carboxylates. Radiochim. Acta 58, 129 (1992).

  • 14.

    Eberle, S. H., Schaefer, J. B.: Stabilitätskonstanten der Komplexe des Neptunyl(V)-lons mit α-Hydroxykarbonsäuren. J. Inorg. Nucl. Chem. 31, 1523 (1969).

    • Crossref
    • Export Citation
  • 15.

    Carbonaro, R. F., Di Toro, D. M.: Linear free energy relationships for metal-ligand complexation. Geochim. Cosmochim. Acta 71, 3958 (2007).

    • Crossref
    • Export Citation
  • 16.

    Claret, F., Schaefer, T., Rabung, T., Wolf, M., Bauer, A., Buckau, G.: Differences in properties and Cm(III) complexation behavior of isolated humic and fulvic acid derived from Opalinus clay and Callovo-Oxfordian argillite. Appl. Geochem. 20, 1158 (2005).

    • Crossref
    • Export Citation
  • 17.

    Sjoblom, R., Hindman, J. C.: Spectrophotometry of neptunium in perchloric acid solutions. J. Am. Chem. Soc. 73, 1744 (1951).

    • Crossref
    • Export Citation
  • 18.

    Marsac, R., Banik, N. L., Lützenkirchen, J., Marquardt, C. M., Dardenne, K., Schild, D., Rothe, J., Diascorn, A., Kupcik, T., Schäfer, T., Geckeis, H.: Neptunium redox speciation at the illite surface. Geochim. Cosmochim. Acta 152, 39 (2015).

    • Crossref
    • Export Citation
  • 19.

    Inoue, Y., Tochiyama, O.: Solvent extraction of neptunium(V) by thenoyltrifluoroacetone and 1,10-phenanthroline or tri-n-octylphosphine oxide. Radiochim. Acta 31, 193 (1982).

  • 20.

    Choppin, G. R., Chen, J.-F.: Complexation of Am(III) by oxalate in NaClO4 media. Radiochim. Acta 74, 105 (1996).

  • 21.

    Choppin, G. R., Erten, H. N., Xia Y.-X.: Variation of stability constants of thorium citrate complexes with ionic strength. Radiochim. Acta 74, 123 (1996).

  • 22.

    Rao, L., Srinivasan, T. G., Garnov, A. Y., Zanonato, P., Di Bernardo, P., Bismondo, A.: Hydrolysis of neptunium(V) at variable temperatures (10–85 °C). Geochim. Cosmochim. Acta 68, 4821 (2004).

    • Crossref
    • Export Citation
  • 23.

    Maya, L.: Hydrolysis and carbonate complexation of dioxoneptunium(V) in 1.0 M NaClO4 at 25 °C. Inorg. Chem. 22, 2093 (1983).

    • Crossref
    • Export Citation
  • 24.

    Wruck, D. A., Palmer, C. E. A., Silva, R. J.: A study of americium(III) carbonate complexation at elevated temperatures by pulsed laser photoacoustic spectroscopy. Radiochim. Acta 85, 21 (1999).

  • 25.

    Götz, C., Geipel, G., Bernhard, G.: The influence of the temperature on the carbonate complexation of uranium(VI) – a spectroscopic study. J. Radioanal. Nucl. Chem. 287, 961 (2011).

    • Crossref
    • Export Citation
  • 26.

    Altmaier, M., Metz, V., Neck, V., Müller, R., Fanghänel, T.: Solid-liquid equilibria of Mg(OH)2(cr) and Mg2(OH)3Cl·4H2O(cr) in the system Mg-Na-H-OH-Cl-H2O at 25 °C. Geochim. Cosmochim. Acta 67, 3595 (2003).

    • Crossref
    • Export Citation
  • 27.

    Good, N. E., Winget, G. D., Winter, W., Connolly, T. N., Izawa, S., Singh, R. M.: Hydrogen ion buffers for biological research. Biochemistry 5, 467 (1966).

    • Crossref
    • PubMed
    • Export Citation
  • 28.

    Zolotov, Y. A., Alimarin, I. P.: Investigation of the chemistry of pentavalent neptunium. J. Inorg. Nucl. Chem. 25, 691 (1963).

    • Crossref
    • Export Citation
  • 29.

    Rao, L., Tian, G., Srinivasan, T. G., Zanonato, P., Di Bernardo, P.: Spectrophotometric and calorimetric studies of Np(V) complexation with acetate at various temperatures from T=283 to 343 K. J. Sol. Chem. 39, 1888 (2010).

    • Crossref
    • Export Citation
  • 30.

    Bromley, L. A.: Thermodynamic properties of strong electrolytes in aqueous solutions. AIChE J. 19, 313 (1973).

    • Crossref
    • Export Citation
  • 31.

    Guillaumont, R., Fanghänel, T., Fuger, J., Grenthe, I., Neck, V., Palmer, D. A., Rand, M. H.: Chemical thermodynamics Vol. 5. Update on the chemical thermodynamics of uranium, neptunium, plutonium, americium and technetium. OECD, NEA-TDB, North Holland, Amsterdam (2003).

  • 32.

    Tian, G., Martin, L. R., Rao, L.: Complexation of lactate with neodymium(III) and europium(III) at variable temperatures. Inorg. Chem. 49, 10598 (2010).

    • Crossref
    • PubMed
    • Export Citation
  • 33.

    Choppin, G. R.: Inner vs outer sphere complexation of f-elements. J. Alloys Compd. 249, 9 (1997).

    • Crossref
    • Export Citation
  • 34.

    Neck, V., Fanghänel, Th., Rudolph, K., Kim, J. I.: Thermodynamics of neptunium(V) in concentrated salt solutions: chloride complexation and ion interaction (Pitzer) parameters for the NpO2 ion. Radiochim. Acta 69, 39 (1995).

  • 35.

    Froehlich, D. R., Skerencak-Frech, A., Morkos, M.-L. K., Panak, P. J.: A spectroscopic study of Cm (III) complexation with propionate in saline solutions at variable temperatures. New J. Chem. 37, 1520 (2013).

    • Crossref
    • Export Citation
  • 36.

    Silva, R. J., Bidoglio, G., Rand, M. H., Robouch, P., Wanner, H., Puigdomenech, I.: Chemical thermodynamics Vol. 2, Chemical thermodynamics of americium. OECD, NEA-TDB, North Holland, Amsterdam (1995).

  • 37.

    Jiang, J., Rao, L., Di Bernardo, P., Zanonato, P. L., Bismondo, A.: Complexation of uranium(VI) with acetate at variable temperatures. J. Chem. Soc. Dalton Trans. 8, 1832 (2002).

  • 38.

    Ahrland, S.: How to distinguish between inner and outer sphere complexes in aqueous solution. Thermodynamic and other criteria. Coord. Chem. Rev. 8, 21 (1972).

    • Crossref
    • Export Citation
  • 39.

    Fröhlich, D. R., Skerencak-Frech, A., Kaplan, U., Koke, C., Rossberg, A., Panak, P. J.: An EXAFS spectroscopic study of Am(III) complexation with lactate. J. Synchrotron. Radiat. 22, 1469 (2015).

    • Crossref
    • PubMed
    • Export Citation
  • 40.

    Barkleit, A., Kretzschmar, J., Tsushima, S., Acker, M.: Americium(III) and europium(III) complex formation with lactate at elevated temperatures studied by spectroscopy. Dalton Trans. 43, 11221 (2014).

    • Crossref
    • PubMed
    • Export Citation
  • 41.

    Choppin, G. R., Friedman, Jr. H. G.: Complexes of trivalent lanthanide ions. III. Bidentate chelates. Inorg. Chem. 5, 1599 (1966).

    • Crossref
    • Export Citation
  • 42.

    Parkhurst, D. L., Appelo, C. A. J.: User’s guide to PHREEQC (Version 2) – a computer program for speciation, batch reaction, one-dimensional transport and inverse geochemical calculation. Water-resources Investigation Report, 99-4259, USGS, Denver, Colorado (1999).

  • 43.

    Bradbury, M. H., Baeyens, B.: Predictive sorption modelling of Ni(II), Co(II), Eu(IIII), Th(IV) and U(VI) on MX-80 bentonite and Opalinus clay, a “bottom-up” approach. Appl. Clay Sci. 52, 2 (2011).

  • 44.

    Marsac, R., Banik, N. L., Lützenkirchen, J., Catrouillet, C., Marquardt, C. M., Johannesson, K. H.: Modeling metal ion-humic substances complexation in highly saline conditions. Appl. Geochem. 79, 52 (2017).

    • Crossref
    • Export Citation
  • 45.

    Marsac, R., Banik, N. L., Lützenkirchen, J., Diascorn, A., Bender, K., Marquardt, C. M., Geckeis, H.: Sorption and redox speciation of plutonium on illite under saline conditions. J. Colloid Interface Sci. 485, 59 (2017).

    • Crossref
    • PubMed
    • Export Citation
  • 46.

    Banik, N. L., Marsac, R., Lützenkirchen, J., Marquardt, C. M., Dardenne, K., Rothe, J., Bender, K., Geckeis, H.: Neptunium sorption and redox speciation at the illite surface under highly saline conditions. Geochim. Cosmochim. Acta 215, 421 (2017).

    • Crossref
    • Export Citation
  • 47.

    Bradbury, M. H., Baeyens, B.: Sorption modeling on illite. Part II: Actinide sorption and linear free energy relationships. Geochim. Cosmochim. Acta 73, 1004 (2009).

    • Crossref
    • Export Citation
  • 48.

    Gaines, G. I., Thomas, H. C.: Adsorption studies on clay minerals. II. A formulation of the thermodynamics of exchange adsorption. J. Phys. Chem. 21, 714 (1953).

    • Crossref
    • Export Citation
  • 49.

    Bradbury, M. H., Baeyens, B.: Sorption modeling on illite. Part I: titration measurements and the sorption of Ni, Co, Eu and Sn. Geochim. Cosmochim. Acta 73, 990 (2009).

    • Crossref
    • Export Citation
  • 50.

    Fröhlich, D. R., Amayri, S., Drebert, J., Reich, T.: Influence of temperature and background electrolyte on the sorption of neptunium(V) on Opalinus clay. Appl. Clay Sci. 69, 43 (2012).

    • Crossref
    • Export Citation
Purchase article
Get instant unlimited access to the article.
$42.00
Log in
Already have access? Please log in.


or
Log in with your institution

Journal + Issues

Search