Zinc oxide nanoparticles: potential novel applications in cellular physiology, pathology, neurosciences and cancer research

Senka Pantic 2 , Sanja Radojevic Skodric 3 , Zlatibor Loncar 4 ,  and Igor Pantic 1
  • 1 University of Belgrade, Faculty of Medicine, Institute of Medical Physiology, Laboratory for cellular physiology, University of Haifa, , IL-3498838, Belgrade, Serbia
  • 2 Institute of Histology and Embryology, School of Medicine, University of Belgrade, Belgrade, Serbia
  • 3 Institute of Pathology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
  • 4 Emergency Centre, Clinical Centre of Serbia, Faculty of Medicine, University of Belgrade, Belgrade, Serbia

Abstract

With the rapid development of nanotechnology during the past several years, attention has been focused on metallic nanomaterials, due to their specific physical and chemical characteristics. Zinc oxide nanoparticles (ZnO NPs) have numerous potential applications in industry, as a part of various consumer products, but also in medical research. Anticancer properties of ZnO NPs have been suggested in cell cultures, however, the precise mechanism responsible for their activity in these conditions remains elusive. Cytotoxicity and genotoxicity of ZnO NPs are also unclear. Apart from cancer research, ZnO NPs are today widely researched in almost all areas of fundamental medicine. In this short review, we discuss recently published articles on ZnO NPs applications in cellular physiology, pathology, neurosciences and oncology.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] K.H. Bae, H.J. Chung, and T.G. Park, Mol Cells, 31 (2011) 295-302.

  • [2] J.A. Barreto, W. O’Malley, M. Kubeil, B. Graham, H. Stephan, and L. Spiccia, Adv Mater, 23 (2011) H18-40.

  • [3] A. Bhardwaj, A. Bhardwaj, A. Misuriya, S.Maroli, S.Manjula, and A.K. Singh, J Int Oral Health, 6 (2014) 121-126.

  • [4] Y. Huang, S. He,W. Cao, K. Cai, and X.J. Liang, Nanoscale, 4 (2012) 6135-6149.

  • [5] S. Marin, G.M. Vlasceanu, R.E. Tiplea, I.R. Bucur, M. Lemnaru, M.M. Marin, et al., Curr Top Med Chem, 15 (2015) 1596-1604.

  • [6] J.R. Morones, J.L. Elechiguerra, A. Camacho, K. Holt, J.B. Kouri, J.T. Ramirez, et al., Nanotechnology, 16 (2005) 2346-2353.

  • [7] S. Chernousova and M. Epple, Angew Chem Int Ed Engl, 52 (2013) 1636-1653.

  • [8] A.R. Ferhan, L. Guo, X. Zhou, P. Chen, S. Hong, and D.H. Kim, Anal Chem, 85 (2013) 4094-4099.

  • [9] K. Hola, Z. Markova, G. Zoppellaro, J. Tucek, and R. Zboril, Biotechnol Adv, 33 (2015) 1162-1176.

  • [10] B. Song, Y. Zhang, J. Liu, X. Feng, T. Zhou, and L. Shao, Nanoscale Res Lett, 11 (2016) 291.

  • [11] D. Nikolovski, M. Jeremic, J. Paunovic, D. Vucevic, T. Radosavljevic, S. Radojevic-Skodric, et al., Rev Adv Mater Sci, 53 (2018) 74-78.

  • [12] J. Paunovic, D. Vucevic, T. Radosavljevic, S. Pantic, D. Nikolovski, and I. Pantic, Rev Adv Mater Sci, 49 (2017) 123-128.

  • [13] D. Nikolovski, S. Dugalic, and I. Pantic, J Microsc, 268 (2017) 45-52.

  • [14] I. Pantic, Sci Prog, 94 (2011) 97-107.

  • [15] I. Pantic, Rev Adv Mater Sci, 37 (2014) 15-19.

  • [16] I. Pantic, Rev Adv Mater Sci, 26 (2010) 67-73.

  • [17] P.K. Mishra, H. Mishra, A. Ekielski, S. Talegaonkar, and B. Vaidya, Drug Discov Today, 22 (2017) 1825-1834.

  • [18] C.H. Li, P.L. Liao, M.K. Shyu, C.W. Liu, C.C. Kao, S.H. Huang, et al., Toxicol Sci, 126 (2012) 162-172.

  • [19] L. Wang, C. Chen, L. Guo, Q. Li, H. Ding, H. Bi, et al., Artif Cells Nanomed Biotechnol, 28 (2018) 1-12.

  • [20] R. Roy, S.K. Singh, M. Das, A. Tripathi, and P.D. Dwivedi, Immunology, 142 (2014) 453-464.

  • [21] R. Roy, D. Kumar, A. Sharma, P. Gupta, B.P. Chaudhari, A. Tripathi, et al., Toxicol Lett, 230 (2014) 421-433.

  • [22] D.P. Bai, X.F. Zhang, G.L. Zhang, Y.F. Huang, and S. Gurunathan, Int J Nanomedicine, 12 (2017) 6521-6535.

  • [23] J.W. Rasmussen, E. Martinez, P. Louka and D.G. Wingett, Expert Opin Drug Deliv, 7 (2010) 1063-1077.

  • [24] S. Ostrovsky, G. Kazimirsky, A. Gedanken and C. Brodie, Nano Res, 2 (2009) 882-890.

  • [25] M.J. Akhtar, M. Ahamed, S. Kumar, M.M. Khan, J. Ahmad, and S.A. Alrokayan, Int J Nanomedicine, 7 (2012) 845-857.

  • [26] A. Thurber, D.G. Wingett, J.W. Rasmussen, J. Layne, L. Johnson, D.A. Tenne, et al., Nanotoxicology, 6 (2012) 440-452.

  • [27] G. Bisht and S. Rayamajhi, Nanobiomedicine, 3 (2016) 9.

  • [28] C. Wang, X. Hu, Y. Gao, and Y. Ji, Biomed Res Int, 2015 (2015) 423287.

  • [29] A.K. Sharma, V. Singh, R. Gera, M.P. Purohit, and D. Ghosh, Mol Neurobiol, 54 (2017) 6273-6286.

  • [30] D. Guo, H. Bi, D. Wang, and Q. Wu, Int J Biochem Cell Biol, 45 (2013) 1849-1859.

  • [31] D. Guo, H. Bi, Q. Wu, D. Wang, and Y. Cui, J Nanosci Nanotechnol, 13 (2013) 3769-3777.

  • [32] X.Q. Liu, H.F. Zhang, W.D. Zhang, P.F. Zhang, Y.N. Hao, R. Song, et al., Toxicol Lett, 256 (2016) 19-32.

  • [33] F. Xiaoli, W. Junrong, L. Xuan, Z. Yanli, W. Limin, L. Jia, et al., Nanomedicine (Lond), 12 (2017) 777-795.

  • [34] S. Amara, I.B. Slama, K. Omri, J. El Ghoul, L. El Mir, K.B. Rhouma, et al., Toxicol Ind Health, 31 (2015) 1202-1209.

  • [35] S. Amara, I. Ben-Slama, I. Mrad, N. Rihane, M. Jeljeli, L. El-Mir, et al., Nanotoxicology, 8 Suppl 1 (2014) 208-215.

  • [36] C. Chen, W. Bu, H. Ding, Q. Li, D. Wang, H. Bi and D. Guo, Cell Prolif 50 (2017).

  • [37] L. Tian, B. Lin, L. Wu, K. Li, H. Liu, J. Yan, X. Liu, and Z. Xi, Sci Rep 5 (2015) 16117.

  • [38] S. Sruthi and P.V. Mohanan, Colloids Surf B Biointerfaces, 133 (2015) 1-11.

  • [39] M.G. Amer and R.A. Karam, Anat Rec (Hoboken) (2018).

  • [40] M. Afifi and A.M. Abdelazim, Asian Pacific Journal of Tropical Biomedicine, 5 (2015) 874-877.

OPEN ACCESS

Journal + Issues

Reviews on Advanced Materials Science is a fully peer-reviewed, open access, electronic journal that publishes significant, original and relevant works in the area of theoretical and experimental studies of advanced materials.

Search