Crystal structures of perovskite halide compounds used for solar cells

Takeo Oku 1
  • 1 Department of Materials Science, The University of Shiga Prefecture, 2500 Hassaka, Hikone, Japan

Abstract

The crystal structures of various types of perovskite halide compounds were summarized and described. Atomic arrangements of these perovskite compounds can be investigated by X-ray diffraction and transmission electron microscopy. Based on the structural models of basic perovskite halides, X-ray and electron diffractions were calculated and discussed to compare with the experimental data. Other halides such as elemental substituted or cation ordered double perovskite compounds were also described. In addition to the ordinary 3-dimensional perovskites, low dimensional perovskites with 2-, 1-, or 0-dimensionalities were summarized. The structural stabilities of the perovskite halides could be investigated computing the tolerance and octahedral factors, which can be useful for the guideline of elemental substitution to improve the structures and properties, and several low toxic halides were proposed. For the device conformation, highly crystalline-orientated grains and dendritic structures can be formed and affected the photo-voltaic properties. The actual crystal structures of perovskite halides in the thin film configuration were studied by Rietveld analysis optimizing the atomic coordinates and occupancies with low residual factors. These results are useful for structure analysis of perovskite halide crystals, which are expected to be next-generation solar cell materials.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Federici, G., C. Bachmann, L. Barucca, W. Biel, L. Boccaccini, R. Brown, et al. DEMO design activity in Europe: Progress and updates. Fusion Engineering and Design, Vol. 136, 2018, pp. 729–741.

  • [2] Gopalaswamy, V., R. Betti, J. P. Knauer, N. Luciani, D. Patel, K. M. Woo, et al. Tripled yield in direct-drive laser fusion through statistical modelling. Nature, Vol. 565, No. 7741, 2019, pp. 581–586.

  • [3] Entler, S., J. Horacek, T. Dlouhy, and V. Dostal. Approximation of the economy of fusion energy. Energy, Vol. 152, 2018, pp. 489–497.

  • [4] Liu, D. G., L. Zheng, L. M. Luo, X. Zan, J. P. Song, Q. Xu, X. Y. Zhu, and Y. C. Wu. An overview of oxidation-resistant tungsten alloys for nuclear fusion. Journal of Alloys and Compounds, Vol. 765, 2018, pp. 299–312.

  • [5] Oku, T. Possible applications of nanomaterials for nuclear fusion devices. Energy Harvesting Systems, Vol. 5, No. 1-2, 2018, pp. 11–27.

  • [6] Oku, T. Solar Cells and Energy Materials. De Gruyter, Berlin, Germany, 2017. https://doi.org/10.1515/9783110298505

  • [7] Kojima, A., K. Teshima, Y. Shirai, and T. Miyasaka. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society, Vol. 131, No. 17, 2009, pp. 6050–6051.

  • [8] Im, J.H., C.R. Lee, J.W. Lee, S.W. Park, and N.G. Park. 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale, Vol. 3, 2011, pp. 4088–4093.

  • [9] Lee, M. M. J. Teusch er, T. Miyasaka, T.N. Murakami, and H. J. Snaith. Efficient hybrid solar cells based on mesosuperstructured organometal halide perovskites. Science, Vol. 338, 2012, pp. 643–647.

  • [10] Kim, H. S., and C. R. Lee. J.H. Im, K.B. Lee, T. Moehl, A. Marchioro, S.J. Moon, J.H. Yum, R. Humphry-Baker, and J.E. Moser. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Scientific Reports, Vol. 2, 2012, pp. 591–597.

  • [11] Kojima, A., M. Ikegami, K. Teshima, and T. Miyasaka, Highly luminescent lead bromide perovskite nanoparticles synthesized with porous alumina media. Chemistry Letters, Vol. 41, 2012, 397-399.

  • [12] Chung, I., B. Lee, J. He, R. P. H. Chang, and M. G. Kanatzidis. All-solid-state dye-sensitized solar cells with high efficiency. Nature, Vol. 485, No. 7399, 2012, pp. 486–489.

  • [13] Im, J.H., J. Chung, S.J. Kim, and N.G. Park, Synthesis, structure, and photovoltaic property of a nanocrystalline 2H perovskite-type novel sensitizer (CH3CH2NH3)PbI3. Nanoscale Research Letters, Vol. 7, 2012, 353-1-7.

  • [14] Grinberg, I., D. V. West, M. Torres, G. Gou, D. M. Stein, L. Wu, G. Chen, and E. M. Gallo. A. A. kbashev, and P.K. Davies. Perovskite oxides for visible-light-absorbing ferroelectric and photovoltaic materials. Nature, Vol. 503, 2013, pp. 509–512.

  • [15] Stranks, S. D., G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science, Vol. 342, No. 6156, 2013, pp. 341–344.

  • [16] Burschka, J., N. Pellet, S. J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature, Vol. 499, No. 7458, 2013, pp. 316–319.

  • [17] Liu, M., M. B. Johnston, and H. J. Snaith. Efficient planar hetero-junction perovskite solar cells by vapour deposition. Nature, Vol. 501, No. 7467, 2013, pp. 395–398.

  • [18] Liu, D., and T. L. Kelly. Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nature Photonics, Vol. 8, No. 2, 2014, pp. 133–138.

  • [19] Wang, J. T. W., J. M. Ball, E. M. Barea, A. Abate, J. A. Alexander-Webber, J. Huang, et al. Low-Temperature Processed Electron Collection Layers of Graphene/TiO2 Nanocomposites in Thin Film Perovskite Solar Cells. Journal of Nanoscience Letters, Vol. 14, No. 2, 2014, pp. 724–730.

  • [20] Wojciechowski, K., M. Saliba, T. Leijtens, A. Abate, and H. J. Snaith. Sub-150°C processed meso-superstructured perovskite solar cells with enhanced efficiency. Energy & Environmental Science, Vol. 7, No. 3, 2014, pp. 1142–1147.

  • [21] Snaith, H. J., A. Abate, J. M. Ball, G. E. Eperon, T. Leijtens, N. K. Noel, et al. Anomalous Hysteresis in Perovskite Solar Cells. Journal of Physical Chemistry Letters, Vol. 5, No. 9, 2014, pp. 1511–1515.

  • [22] Nie, W., H. Tsai, R. Asadpour, J. C. Blancon, A. J. Neukirch, G. Gupta. Solar cells. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science, Vol. 347, No. 6221, 2015, pp. 522–525.

  • [23] Dong, Q., Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao, and J. Huang. Solar cells. Electron-hole diffusion lengths > 175 µm in solution-grown CH3NH3PbI3 single crystals. Science, Vol. 347, No. 6225, 2015, pp. 967–970.

  • [24] Jeon, N.J., J.H. Noh, W.S. Yang, Y.C. Kim, S. Ryu, J. Seo, and S.I. Seok, Compositional engineering of perovskite materials for high-performance solar cells. Nature, Vol. 517, 2015, pp. 476-480.

  • [25] Saliba, M., S. Orlandi, T. Matsui, S. Aghazada, M. Cavazzini, J.P. Correa-Baena, et al. A molecularly engineered hole-transporting material for efficient perovskite solar cells. Nature Energy, 1 (2016) 15017-1-7.

  • [26] Bi, D., C. Yi, J. Luo, J. D. Décoppet, F. Zhang, S. M. Zakeeruddin, et al. Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%. Nature Energy, Vol. 1, No. 10, 2016, p. 16142.

  • [27] Bi, D., W. Tress, M.I. Dar, P. Gao, J. Luo, C. Renevier, et al. Efficient luminescent solar cells based on tailored mixed-cation perovskites. Science Advances, Vol. 2, 2016, e1501170-1-7.

  • [28] Saliba, M., T. Matsui, J. Y. Seo, K. Domanski, J. P. Correa-Baena, M. K. Nazeeruddin, et al. Cesium-containing triple cation perovskite solar cells: Improved stability, reproducibility and high efficiency. Energy & Environmental Science, Vol. 9, No. 6, 2016, pp. 1989–1997.

  • [29] Saliba, M., T. Matsui, K. Domanski, J. Y. Seo, A. Ummadisingu, S. M. Zakeeruddin, et al. Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science, Vol. 354, No. 6309, 2016, pp. 206–209.

  • [30] He, M., B. Li, X. Cui, B. Jiang, Y. He, Y. Chen, et al. Meniscus-assisted solution printing of large-grained perovskite films for high-efficiency solar cells. Nature Communications, Vol. 8, 2017, 16045-1-10.

  • [31] Shin, S. S., E. J. Yeom, W. S. Yang, S. Hur, M. G. Kim, J. Im, et al. Colloidally prepared La-doped BaSnO3 electrodes for efficient, photostable perovskite solar cells. Science, Vol. 356, No. 6334, 2017, pp. 167–171.

  • [32] Wang, J. M., Z. K. Wang, M. Li, C. C. Zhang, L. L. Jiang, K. H. Hu, et al. Doped copper phthalocyanine via an aqueous solution process for normal and inverted perovskite solar cells. Advanced Energy Materials, Vol. 7, 2017, 1701688-1-8.

  • [33] Arora, N., M. I. Dar, A. Hinderhofer, N. Pellet, F. Schreiber, S. M. Zakeeruddin, and M. Grätzel. Perovskite solar cells with CuSCN hole extraction layers yield stabilized efficiencies greater than 20%. Science, Vol. 358, No. 6364, 2017, pp. 768–771.

  • [34] Yang, W. S., B. W. Park, E. H. Jung, N. J. Jeon, Y. C. Kim, D. U. Lee, et al. Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science, Vol. 356, No. 6345, 2017, pp. 1376–1379.

  • [35] Cho, Y., A. M. Soufiani, J. S. Yun, J. Kim, D. S. Lee, J. Seidel, et al. Mixed 3D-2D passivation treatment for mixed-cation lead mixed-halide perovskite solar cells for higher efficiency and better stability. Advanced Energy Materials, Vol. 8, 2018, 1703392-1-10.

  • [36] Zhao, Y., H. Tan, H. Yuan, Z. Yang, J. Z. Fan, J. Kim, et al., Perovskite seeding growth of formamidinium-lead-iodide-based perovskites for efficient and stable solar cells. Nature Communications, Vol. 9, 2018, 1607-1-10.

  • [37] Tang, Z., T. Bessho, F. Awai, T. Kinoshita, M. M. Maitani, R. Jono, et al., Hysteresis-free perovskite solar cells made of potassium-doped organometal halide perovskite. Scientific Reports, Vol. 7, 2017, 12183-1-7.

  • [38] Xu, W., L. Zheng, X. Zhang, Y. Cao, T. Meng, D. Wu, et al. Efficient perovskite solar cells fabricated by Co partially substituted hybrid perovskite. Advanced Energy Materials, 15 (2018) 1703178-1-11.

  • [39] Oku, T. Solar Cells – New Approaches and Reviews, Kosyachenko, L. A., Ed., InTech, Rijeca, Croatia, 2015, Chapter 3, pp. 77–102.

  • [40] Oku, T., M. Zushi, K. Suzuki, Y. Ohishi, T. Matsumoto, and A. Suzuki. Nanostructured Solar Cells, Das, N., Ed., InTech, Rijeca, Croatia, 2017, Chapter 11, pp. 217–243.

  • [41] Hao, F., C. C. Stoumpos, D. H. Cao, R. P. H. Chang, and M. G. Kanatzidis. Lead-free solid-state organic–inorganic halide perovskite solar cells. Nature Photonics, Vol. 8, No. 6, 2014, pp. 489–494.

  • [42] Zuo, F., S. T. Williams, P. W. Liang, C. C. Chueh, C. Y. Liao, and A. K. Y. Jen. Binary-metal perovskites toward high-performance planar-heterojunction hybrid solar cells. Advanced Materials, Vol. 26, No. 37, 2014, pp. 6454–6460.

  • [43] Liao, W., D. Zhao, Y. Yu, N. Shrestha, K. Ghimire, C. R. Grice, C. Wanget al. Fabrication of efficient low-bandgap perovskite solar cells by combining formamidinium tin iodide with methylammonium lead iodide. Journal of the American Chemical Society, Vol. 138, No. 38, 2016, pp. 12360–12363.

  • [44] Zhu, H. L., J. Xiao, J. Mao, H. Zhang, Y. Zhao, and W.C.H. Choy, Controllable crystallization of CH3NH3Sn0.25Pb0.75I3 perovskites for hysteresis-free solar cells with efficiency reaching 15.2%. Advanced Functional Materials, Vol. 27, 2017, 1605469-1-8.

  • [45] Tavakoli, M. M., S. M. Zakeeruddin, M. Grätzel, and Z. Fan, Large-grain tin-rich perovskite films for efficient solar cells via metal alloying technique. Advanced Materials, Vol. 30, 2018, 1705998-1-9.

  • [46] Oku, T., Y. Ohishi, and A. Suzuki. Effects of antimony addition to perovskite-type CH3NH3PbI3 photovoltaic devices. Chemistry Letters, Vol. 45, No. 2, 2016, pp. 134–136.

  • [47] Zhang, J., M. H. Shang, P. Wang, X. Huang, J. Xu, Z. Hu, et al. n-type doping and energy states tuning in CH3NH3Pb1− xSb2 x /3I3 perovskite solar cells. ACS Energy Letters, Vol. 1, No. 3, 2016, pp. 535–541.

  • [48] Yamanouchi, J., T. Oku, Y. Ohishi, M. Fukaya, N. Ueoka, H. Tanaka, and A. Suzuki. Fabrication and characterization of perovskite CH3NH3Pb1−xSbxI3−3 xBr3 photovoltaic device. Advanced Materials Research, Vol. 7, 2018, pp. 435–446.

  • [49] Jahandar, M., J. H. Heo, C. E. Song, K. J. Kong, W. S. Shi, J. C. Lee, et al. Highly efficient metal halide substituted CH3NH3I(PbI2)1−X(CuBr2)X planar perovskite solar cells. Nano Energy, Vol. 27, 2016, pp. 330–339.

  • [50] Abdi-Jalebi, M., M. I. Dar, A. Sadhanala, S. P. Senanayak, M. Franckevičius, N. Arora, et al., Impact of Monovalent Cation Halide Additives on the Structural and Optoelectronic Properties of CH3NH3PbI3 Perovskite. Advanced Energy Materials, 6 (2016) 1502472-1-10.

  • [51] Shirahata, Y., and T. Oku, Effects of copper addition on photovoltaic properties of perovskite CH3NH3PbI3xClx solar cells. Physica Status Solidi A, Vol. 214, 2017, 1700268-1-6.

  • [52] Shirahata, Y. and T. Oku. Microstructures, optical and photo-voltaic properties of CH3NH3PbI3(1−x)Clx perovskite films with CuSCN additive. Materials Research Express, Vol. 5, No. 5, 2018, 055504-1–10.

  • [53] Tanaka, H., Y. Ohishi, and T. Oku. Effects of Cu addition to perovskite CH3NH3PbI3xClx photovoltaic devices with hot airflow during spin-coating. Japanese Journal of Applied Physics, Vol. 57, 2018, 08RE10-1–5.

  • [54] Tanaka, H., T. Oku, and N. Ueoka. Fabrication and Characterization of the copper bromides-added CH3NH3PbI3−xClx perovskite solar cells. Synthetic Metals, Vol. 244, 2018, pp. 128–133.

  • [55] Ueoka, N., T. Oku, and A. Suzuki. Additive effects of alkali metals on Cu-modified CH3NH3PbI3− Cl photovoltaic devices. RSC Advances, Vol. 9, No. 42, 2019, pp. 24231–24240.

  • [56] Hamatani, T., and T. Oku. Effects of halide addition to arsenic-doped perovskite photovoltaic devices. AIP Conference Proceedings, Vol. 1929, 2018, 020018-1–8.

  • [57] Krishnamoorthy, T., H. Ding, C. Yan, W. L. Leong, T. Baikie, Z. Zhang, et al. Lead-free germanium iodide perovskite materials for photovoltaic applications. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, Vol. 3, No. 47, 2015, pp. 23829–23832.

  • [58] Ohishi, Y., T. Oku, and A. Suzuki. Fabrication and characterization of perovskite-based CH3NH3Pb1−xGexI3, CH3NH3Pb1−xTlxI3 and CH3NH3Pb1−xInxI3 photovoltaic devices. AIP Conference Proceedings, Vol. 1709, 2016, 020020-1–8.

  • [59] Tanaka, H., Y. Ohishi, and T. Oku. Effects of GeI2 or ZnI2 addition to perovskite CH3NH3PbI3 photovoltaic devices. AIP Conference Proceedings, Vol. 1929, 2018, 020007-1–7.

  • [60] Zhao, W., D. Yang, Z. Yang, and S. Liu. Zn-doping for reduced hysteresis and improved performance of methylammonium lead iodide perovskite hybrid solar cells. Materials Today Energy, Vol. 5, 2017, pp. 205–213.

  • [61] Shai, X., J. Wang, P. Sun, W. Huang, P. Liao, F. Cheng et al. Achieving ordered and stable binary metal perovskite via strain engineering. Nano Energy, Vol. 48, 2018, pp. 117–127.

  • [62] Zheng, H., G. Liu, X. Xu, A. Alsaedi, T. Hayat, X. Pan, and S. Dai. Acquiring high-performance and stable mixed-dimensional perovskite solar cells by using a transition-metal-substituted Pb precursor. ChemSusChem, Vol. 11, No. 18, 2018, pp. 3269–3275.

  • [63] Zhang, X., J. Yin, Z. Nie, Q. Zhang, N. Sui, B. Chen, et al. Lead-free and amorphous organic–inorganic hybrid materials for photo-voltaic applications: Mesoscopic CH3NH3MnI3/TiO2 heterojunction. RSC Advances, Vol. 7, No. 59, 2017, pp. 37419–37425.

  • [64] Taguchi, M., A. Suzuki, H. Tanaka, and T. Oku. Fabrication and characterization of perovskite solar cells added with MnCl2, YCl3 or poly(methyl methacrylate). AIP Conference Proceedings, Vol. 1929, 2018, 020012-1–8.

  • [65] Zhang, H., H. Wang, S. T. Williams, D. Xiong, W. Zhang, C. C. Chueh, et al., SrCl2 derived perovskite facilitating a high efficiency of 16% in hole-conductor-free fully printable mesoscopic perovskite solar cells. Advanced Materials, Vol. 29, 2017, 1606608-1-8.

  • [66] Klug, M. T., A. Osherov, A. A. Haghighirad, S. D. Stranks, P. R. Brown, S. Bai, et al. Tailoring metal halide perovskites through metal substitution: Influence on photovoltaic and material properties. Energy & Environmental Science, Vol. 10, No. 1, 2017, pp. 236–246.

  • [67] Wang, L., H. Zhou, J. Hu, B. Huang, M. Sun, B. Dong, et al. A Eu3+-Eu2+ ion redox shuttle imparts operational durability to Pb-I perovskite solar cells. Science, Vol. 363, No. 6424, 2019, pp. 265–270.

  • [68] Park, B. W., B. Philippe, X. Zhang, H. Rensmo, G. Boschloo, and E. M. J. Johansson. Bismuth based hybrid perovskites A3Bi2I9 (A: methylammonium or cesium) for solar cell application. Advanced Materials, Vol. 27, No. 43, 2015, pp. 6806–6813.

  • [69] Suárez, I., M. Vallés-Pelarda, A. F. Gualdrón-Reyes, I. Mora-Seró, A. Ferrando, H. Michinel. Outstanding nonlinear optical properties of methylammonium- and Cs-PbX3 (X = Br, I, and Br–I) perovskites: Polycrystalline thin films and nanoparticles. APL Materials, Vol. 7, No. 4, 2019, 041106-1–9.

  • [70] Ueoka, N., T. Oku, A. Suzuki, H. Sakamoto, M. Yamada, S. Minami, and S. Miyauchi. Fabrication and characterization of CH3NH3(Cs)Pb(Sn)I3(Cl) perovskite solar cells with TiO2 nanoparticle layers. Japanese Journal of Applied Physics, Vol. 57, No. 7, 2018, 02CE03-1–7.

  • [71] Turren-Cruz, S. H., M. Saliba, M. T. Mayer, H. Juárez-Santiesteban, X. Mathew, L. Nienhaus, et al. Enhanced charge carrier mobility and lifetime suppress hysteresis and improve efficiency in planar perovskite solar cells. Energy & Environmental Science, Vol. 11, No. 1, 2018, pp. 78–86.

  • [72] Jung, M. H., S. H. Rhim, and D. Moon. TiO2/RbPbI3 halide perovskite solar cells. Solar Energy Materials and Solar Cells, Vol. 172, 2017, pp. 44–54.

  • [73] Zhao, W., Z. Yao, F. Yu, D. Yang, and S. Liu, Alkali metal doping for improved CH3NH3PbI3 perovskite solar cells. Advanced Science, Vol. 5, 2018, 1700131-1-7.

  • [74] Machiba, H., T. Oku, T. Kishimoto, N. Ueoka, and A. Suzuki. Fabrication and evaluation of K-doped MA0.8FA0.1K0.1PbI3(Cl) perovskite solar cells. Chemical Physics Letters, Vol. 730, 2019, pp. 117–123.

  • [75] Yang, W. S., J. H. Noh, N. J. Jeon, Y. C. Kim, S. Ryu, J. Seo, and S. I. Seok. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science, Vol. 348, No. 6240, 2015, pp. 1234–1237.

  • [76] Zhou, Y., M. Yang, S. Pang, K. Zhu, and N. P. Padture. Exceptional morphology-preserving evolution of formamidinium lead triiodide perovskite thin films via organic-cation displacement. Journal of the American Chemical Society, Vol. 138, No. 17, 2016, pp. 5535–5538.

  • [77] Hu, M., L. Liu, A. Mei, Y. Yang, T. Liu, and H. Han. Efficient hole-conductor-free, fully printable mesoscopic perovskite solar cells with a broad light harvester NH2CH=NH2PbI3. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, Vol. 2, No. 40, 2014, pp. 17115–17121.

  • [78] Suzuki, A., M. Kato, N. Ueoka, and T. Oku. Additive effect of formamidinium chloride in methylammonium lead halide compound-based perovskite solar cells. Journal of Electronic Materials, Vol. 48, No. 6, 2019, pp. 3900–3907.

  • [79] Peng, W., X. Miao, V. Adinol, E. Alarousu, O. E. Tall, A. H. Emwas, et al. Engineering of CH3NH3PbI3 perovskite crystals by alloying large organic cations for enhanced thermal stability and transport properties. Angewandte Chemie International Edition, Vol. 55, No. 36, 2016, pp. 10686–10690.

  • [80] Jodlowski, A. D., C. Roldán-Carmona, G. Grancini, M. Salado, M. Ralaiarisoa, S. Ahmad, et al. Large guanidinium cation mixed with methylammonium in lead iodide perovskites for 19% efficient solar cells. Nature Energy, Vol. 2, No. 12, 2017, pp. 972–979.

  • [81] Kishimoto, T., A. Suzuki, N. Ueoka, and T. Oku. Effects of guanidinium addition to CH3NH3PbI3−xClx perovskite photovoltaic devices. Journal of the Ceramic Society of Japan, Vol. 127, No. 7, 2019, pp. 491–497.

  • [82] Shi, D., V. Adinolfi, R. Comin, M. Yuan, E. Alarousu, A. Buin, et al. Solar cells. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science, Vol. 347, No. 6221, 2015, pp. 519–522.

  • [83] He, J., and T. Chen. Additive regulated crystallization and film formation of CH3NH3PbI3−xBrx for highly efficient planar-heterojunction solar cells. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, Vol. 3, No. 36, 2015, pp. 18514–18520.

  • [84] Zhou, H., Q. Chen, G. Li, S. Luo, T. B. Song, H. S. Duan, et al. Photovoltaics. Interface engineering of highly efficient perovskite solar cells. Science, Vol. 345, No. 6196, 2014, pp. 542–546.

  • [85] Wehrenfennig, C., M. Liu, H. J. Snaith, M. B. Johnston, and L. M. Herz. Charge-carrier dynamics in vapour-deposited films of the organolead halide perovskite CH3NH3PbI3−xClx. Energy & Environmental Science, Vol. 7, No. 7, 2014, pp. 2269–2275.

  • [86] Xie, F. X., H. Su, J. Mao, K. S. Wong, and W. C. H. Choy. Evolution of diffusion length and trap state induced by chloride in perovskite solar cell. Journal of Physical Chemistry C, Vol. 120, No. 38, 2016, pp. 21248–21253.

  • [87] Oku, T., K. Suzuki, and A. Suzuki. Effects of chlorine addition to perovskite-type CH3NH3PbI3 photovoltaic devices. Journal of the Ceramic Society of Japan, Vol. 124, No. 3, 2016, pp. 234–238.

  • [88] Wang, F., A. Shimazaki, F. Yang, K. Kanahashi, K. Matsuki, Y. Miyauchi, et al. Highly efficient and stable perovskite solar cells by interfacial engineering using solution-processed polymer layer. Journal of Physical Chemistry C, Vol. 121, No. 3, 2017, pp. 1562–1568.

  • [89] Li, G., T. Zhang, F. Xu, and Y. Zhao. A facile deposition of large grain and phase pure-FAPbI3 for perovskite solar cells via a flash crystallization. Materials Today Energy, Vol. 5, 2017, pp. 293–298.

  • [90] Taguchi, M., A. Suzuki, N. Ueoka, and T. Oku. Effects of poly(methyl methacrylate) addition to perovskite photovoltaic devices. AIP Conference Proceedings, Vol. 2067, 2019, 020018-1–8.

  • [91] Guo, J. J., Z. C. Bai, X. F. Meng, M. M. Sun, J. H. Song, Z. S. Shen, et al. Novel dopant-free metallophthalocyanines based hole transporting materials for perovskite solar cells: The effect of core metal on photovoltaic performance. Solar Energy, Vol. 155, 2017, pp. 121–129.

  • [92] Jiang, X., Z. Yu, H. B. Li, Y. Zhao, J. Qu, J. Lai, et al. A solution-processable copper(ii) phthalocyanine derivative as a dopant-free hole-transporting material for efficient and stable carbon counter electrode-based perovskite solar cells. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, Vol. 5, No. 34, 2017, pp. 17862–17866.

  • [93] Wang, J. M., Z. K. Wang, M. Li, C. C. Zhang, L. L. Jiang, K. H. Hu, et al., Doped copper phthalocyanine via an aqueous solution process for normal and inverted perovskite solar cells. Advanced Energy Materials, Vol. 8, 2018, 1701688-1-8.

  • [94] Suzuki, A., H. Okumura, Y. Yamasaki, and T. Oku. Fabrication and characterization of perovskite type solar cells using phthalocya-nine complexes. Applied Surface Science, Vol. 488, 2019, pp. 586–592.

  • [95] Oku, T., J. Nomura, A. Suzuki, H. Tanaka, S. Fukunishi, S. Minami, and S. Tsukada, Fabrication and characterization of CH3NH3PbI3 perovskite solar cells added with polysilanes. International Journal of Photoenergy, Vol. 2018, 2018, 8654963-1-7.

  • [96] Taguchi, M., A. Suzuki, T. Oku, S. Fukunishi, S. Minami, and M. Okita, Effects of decaphenylcyclopentasilane addition on photovoltaic properties of perovskite solar cells. Coatings, Vol. 8, 2018, 461-1-10.

  • [97] Taguchi, M., A. Suzukia, T. Oku, N. Ueoka, S. Minami, and M. Okita. Effects of annealing temperature on decaphenylcyclopentasilane-inserted CH3NH3PbI3 perovskite solar cells. Chemical Physics Letters, Vol. 737, 2019, 136822-1–7.

  • [98] Guo, Y., Q. Wang, and W. A. Saidi. Structural stabilities and electronic properties of high-angle grain boundaries in perovskite cesium lead halides. Journal of Physical Chemistry C, Vol. 121, No. 3, 2017, pp. 1715–1722.

  • [99] Lee, J. W., S. H. Bae, N. D. Marco, Y. H. Hsieh, Z. Dai, and Y. Yang. The role of grain boundaries in perovskite solar cells. Materials Today Energy, Vol. 7, 2018, pp. 149–160.

  • [100] Zhou, W., Z. Wen, and P. Gao, Less is more: dopant-free hole transporting materials for high-efficiency perovskite solar cells. Advanced Energy Materials, Vol. 8, 2018, 1702512-1-28.

  • [101] Wang, C., H. Hao, S. Chen, K. Cao, H. Yu, Q. Zhang, et al., Inverse-architecture perovskite solar cells with 5,6,11,12-tetraphenylnaphthacene as a hole conductor. RSC Advances, Vol. 7, 2017, pp. 29944-29952.

  • [102] Zhang, H., H. Wang, W. Chen, and A. K. Y. Jen. CuGaO2: A promising inorganic hole-transporting material for highly efficient and stable perovskite solar cells. Advanced Materials, Vol. 29, No. 8, 2017, pp. 1604984-1-8.

  • [103] Suzuki, A., T. Kida, T. Takagi, and T. Oku. Effects of hole-transporting layers of perovskite-based solar cells. Japanese Journal of Applied Physics, Vol. 55, 2016, 02BF01-1–5.

  • [104] Yang, G., H. Tao, P. Qin, W. Ke, and G. Fang. Recent progress in electron transport layers for efficient perovskite solar cells. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, Vol. 4, No. 11, 2016, pp. 3970–3990.

  • [105] Chen, B. X., H. S. Rao, W. G. Li, Y. F. Xu, H. Y. Chen, D. B. Kuang, and C. Y. Su. Achieving high-performance planar perovskite solar cell with Nb-doped TiO2 compact layer by enhanced electron injection and efficient charge extraction. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, Vol. 4, No. 15, 2016, pp. 5647–5653.

  • [106] Oku, T., T. Iwata, and A. Suzuki. Effects of niobium addition into TiO2 layers on CH3NH3PbI3-based photovoltaic devices. Chemistry Letters, Vol. 44, No. 7, 2015, pp. 1033–1035.

  • [107] Chen, W., Y. Wu, Y. Yue, J. Liu, W. Zhang, X. Yang, et al. Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers. Science, Vol. 350, No. 6263, 2015, pp. 944–948.

  • [108] Oku, T., T. Matsumoto, A. Suzuki, and K. Suzuki. Fabrication and characterization of a perovskite-type solar cell with a substrate size of 70 mm. Coatings, Vol. 5, No. 4, 2015, pp. 646–655.

  • [109] Li, X., D. Bi, C. Yi, J. D. Décoppet, J. Luo, S. M. Zakeeruddin, et al. A vacuum flash-assisted solution process for high-efficiency large-area perovskite solar cells. Science, Vol. 353, No. 6294, 2016, pp. 58–62.

  • [110] Higuchi, H., and T. Negami. Largest highly efficient 203 × 203 mm2 CH3NH3PbI3 perovskite solar modules. Japanese Journal of Applied Physics, Vol. 57, 8S3, 2018, 08RE11-1–6.

  • [111] Zhou, Y., M. Yang, A. L. Vasiliev, H. F. Garces, Y. Zhao, D. Wang, et al. Growth control of compact CH3NH3PbI3 thin films via enhanced solid-state precursor reaction for efficient planar perovskite solar cells. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, Vol. 3, No. 17, 2015, pp. 9249–9256.

  • [112] Zong, Y., Y. Zhou, M. Ju, H. F. Garces, A. R. Krause, F. Ji et al. Thin-film transformation of NH4PbI3 to CH3NH3PbI3 perovskite: A methylamine-induced conversion-healing process. Angewandte Chemie International Edition, Vol. 55, No. 47, 2016, pp. 14723–14727.

  • [113] Oku, T., M. Kanayama, Y. Ono, T. Akiyama, Y. Kanamori, and M. Murozon. Microstructures, optical and photoelectric conversion properties of spherical silicon solar cells with anti-reffiection SnOx:F thin films. Japanese Journal of Applied Physics, Vol. 53, 2014, 05FJ03-1–7.

  • [114] Oku, T., S. Hori, A. Suzuki, T. Akiyama, and Y. Yamasaki. Fabrication and characterization of PCBM:P3HT:silicon phthalocyanine bulk heterojunction solar cells with inverted structures. Japanese Journal of Applied Physics, Vol. 53, 2014, 05FJ08-1–5.

  • [115] Oku, T. Structure Analysis of Advanced Nano-materials. De Gruyter, Berlin, Germany, 2014. https://doi.org/10.1515/9783110305012.

  • [116] Oku, T. Direct structure analysis of advanced nanomaterials by high-resolution electron microscopy. Nanotechnology Reviews, Vol. 1, No. 5, 2012, pp. 389–425.

  • [117] Oku, T. High-resolution electron microscopy and electron diffraction of perovskite-type superconducting copper oxides. Nanotechnology Reviews, Vol. 3, No. 5, 2014, pp. 413–444.

  • [118] Baikie, T., Y. Fang, J. M. Kadro, M. Schreyer, F. Wei, S. G. Mhaisalkar, et al. Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, Vol. 1, No. 18, 2013, pp. 5628–5641.

  • [119] Chang, J., H. Zhu, J. Xiao, F. H. Isikgor, Z. Lin, Y. Hao, et al. Enhancing the planar heterojunction perovskite solar cell performance through tuning the precursor ratio. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, Vol. 4, No. 20, 2016, pp. 7943–7949.

  • [120] Saliba, M., J. P. Correa-Baena, C. M. Wolff, M. Stolterfoht, N. Phung, S. Albrecht, et al. How to make over 20% efficient perovskite solar cells in regular (n–i–p) and inverted (p–i–n) architectures. Chemistry of Materials, Vol. 30, No. 13, 2018, pp. 4193–4201.

  • [121] Zushi, M., A. Suzuki, T. Akiyama, and T. Oku. Fabrication and Characterization of TiO2/CH3NH3PbI3-based Photovoltaic Devices. Chemistry Letters, Vol. 43, No. 6, 2014, pp. 916–918.

  • [122] Oku, T., N. Kakuta, K. Kobayashi, A. Suzuki, and K. Kikuchi. Fabrication and characterization of TiO2-based dye-sensitized solar cells. Progress in Natural Science: Materials International, Vol. 21, No. 2, 2011, pp. 122–126.

  • [123] Oku, T., M. Zushi, Y. Imanishi, A. Suzuki, and K. Suzuki. Microstructures and photovoltaic properties of perovskite-type CH3NH3PbI3 compounds. Applied Physics Express, Vol. 7, No. 12, 2014, 121601-1–4.

  • [124] Oku, T., A. Takeda, A. Nagata, H. Kidowaki, K. Kumada, K. Fuji-moto, et al. Microstructures and photovoltaic properties of C60 based solar cells with copper oxides, CuInS2, phthalocyanines, porphyrin, PVK, nanodiamond, germanium and exciton diffusion blocking layers. Materials Technology, Vol. 28, No. 1-2, 2013, pp. 21–39.

  • [125] Oku, T., H. Wakimoto, A. Otsuki, and M. Murakami. NiGe-based ohmic contacts to n-type GaAs. I. Effects of In addition. Journal of Applied Physics, Vol. 75, No. 5, 1994, pp. 2522–2529.

  • [126] Ueoka, N., and T. Oku. Stability characterization of PbI2-added CH3NH3PbI3−xClx photovoltaic devices. ACS Applied Materials & Interfaces, Vol. 10, No. 51, 2018, pp. 44443–44451.

  • [127] Wang, L., C. McCleese, A. Kovalsky, Y. Zhao, and C. Burda. Femtosecond time-resolved transient absorption spectroscopy of CH3NH3PbI3 perovskite films: Evidence for passivation effect of PbI2. Journal of the American Chemical Society, Vol. 136, No. 35, 2014, pp. 12205–12208.

  • [128] Chen, Q., H. Zhou, T. B. Song, S. Luo, Z. Hong, H. S. Duan, et al. Controllable self-induced passivation of hybrid lead iodide perovskites toward high performance solar cells. Nano Letters, Vol. 14, No. 7, 2014, pp. 4158–4163.

  • [129] Roldán-Carmona, C., P. Gratia, I. Zimmermann, G. Grancini, P. Gao, M. Graetzel, and M. K. Nazeeruddin. High efficiency methylammonium lead triiodide perovskite solar cells: The relevance of non-stoichiometric precursors. Energy & Environmental Science, Vol. 8, No. 12, 2015, pp. 3550–3556.

  • [130] Guo, Y., K. Shoyama, W. Sato, Y. Matsuo, K. Inoue, K. Harano, et al. Chemical pathways connecting lead(II) iodide and perovskite via polymeric plumbate(II) fiber. Journal of the American Chemical Society, Vol. 137, No. 50, 2015, pp. 15907–15914.

  • [131] Zhang, T., N. Guo, G. Qian, X. Li, and Y. Zhao. A controllable fabrication of grain boundary PbI2 nanoplates passivated lead halide perovskites for high performance solar cells. Nano Energy, Vol. 26, 2016, pp. 50–56.

  • [132] Ueoka, N., T. Oku, H. Tanaka, A. Suzuki, H. Sakamoto, M. Yamada, et al. Effects of PbI2 addition and TiO2 electron transport layers for perovskite solar cells. Japanese Journal of Applied Physics, Vol. 57, No. 7, 2018, 08RE05-1–7.

  • [133] Ueoka, N., T. Oku, and A. Suzuki. Effects of excess PbI2 addition to CH3NH3PbI3−xClx perovskite solar cells. Chemistry Letters, Vol. 47, No. 4, 2018, pp. 528–531.

  • [134] Mashiyama, H., Y. Kurihara, and T. Azetsu. Disordered cubic perovskite structure of CH3NH3PbX3 (X=Cl, Br, I). Journal of the Korean Physical Society, Vol. 32, 1998, pp. S156–S158.

  • [135] Chen, T., B. J. Foley, B. Ipek, M. Tyagi, J. R. P. Copley, C. M. Brown, et al. Rotational dynamics of organic cations in the CH3NH3PbI3 perovskite. Physical Chemistry Chemical Physics, Vol. 17, No. 46, 2015, pp. 31278–31286.

  • [136] Whitfield, P. S., N. Herron, W. E. Guise, K. Page, Y. Q. Cheng, I. Milas, and M. K. Crawford, Structures, phase transitions and tricritical behavior of the hybrid perovskite methyl ammonium lead iodide. Scientific Reports, Vol. 6, 2016, 35685-1-15.

  • [137] Saliba, M., and J. P. Correa-Baena. M, Grätzel, A. Hagfeldt, and A. Abate. Perovskite solar cells: from the atomic level to film quality and device performance. Angewandte Chemie International Edition, Vol. 57, 2018, pp. 2554–2569.

  • [138] Saliba, M., M. Stolterfoht, C. M. Wolff, D. Neher, and A. Abate. Measuring aging stability of perovskite solar cells. Joule, Vol. 2, No. 6, 2018, pp. 1019–1024.

  • [139] Saliba, M. Perovskite solar cells must come of age. Science, Vol. 359, No. 6374, 2018, pp. 388–389.

  • [140] Zhou, Y. and Y. Zhao. Chemical stability and instability of inorganic halide perovskites. Energy & Environmental Science, Vol. 12, No. 5, 2019, pp. 1495–1511.

  • [141] Travis, W., E. N. K. Glover, H. Bronstein, D. O. Scanlon, and R. G. Palgrave. On the application of the tolerance factor to inorganic and hybrid halide perovskites: A revised system. Chemical Science (Cambridge), Vol. 7, No. 7, 2016, pp. 4548–4556.

  • [142] Hoeffier, S. F., G. Trimmel, and T. Rath. Progress on lead-free metal halide perovskites for photovoltaic applications: A review. Monatshefte für Chemie, Vol. 148, No. 5, 2017, pp. 795–826.

  • [143] Li, Z., M. Yang, J. S. Park, S. H. Wei, J. J. Berry, and K. Zhu. Perovskite structures by tuning tolerance factor: Formation of formamidinium and cesium lead iodide solid-state alloys. Chemistry of Materials, Vol. 28, No. 1, 2016, pp. 284–292.

  • [144] Tanaka, H., T. Oku, and N. Ueoka. Structural stabilities of organic-inorganic perovskite crystals. Japanese Journal of Applied Physics, Vol. 57, 2018, 08RE12-1–9.

  • [145] Shannon, R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica. Section A, Crystal Physics, Diffraction, Theoretical and General Crystallography, Vol. 32, No. 5, 1976, pp. 751–767.

  • [146] Li, C., X. Lu, W. Ding, L. Feng, Y. Gao, and Z. Guo. Formability of ABX3 (X = F, Cl, Br, I) halide perovskites. Acta Crystallographica. Section B, Structural Science, Vol. 64, No. Pt 6, 2008, pp. 702–707.

  • [147] Kieslich, G., S. Sun, and A. K. Cheetham. An extended Tolerance Factor approach for organic–inorganic perovskites. Chemical Science (Cambridge), Vol. 6, No. 6, 2015, pp. 3430–3433.

  • [148] Sampson, M. D., J. S. Park, R. D. Schaller, M. K. Y. Chan, and A. B. F. Martinson. Transition metal-substituted lead halide perovskite absorbers. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, Vol. 5, No. 7, 2017, pp. 3578–3588.

  • [149] Xiao, Z. and Y. Yan, Progress in theoretical study of metal halide perovskite solar cell materials. Advanced Energy Materials, Vol. 7, 2017, 1701136-1-20.

  • [150] Bartel, C. J., C. Sutton, B. R. Goldsmith, R. Ouyang, C. B. Mus-grave, L. M. Ghiringhelli, and M. Scheffler. New tolerance factor to predict the stability of perovskite oxides and halides. Science Advances, Vol. 5, No. 2, 2019, eaav0693-1–9.

  • [151] Körbel, S., M. A. L. Marques, and S. Botti. Stability and electronic properties of new inorganic perovskites from high-throughput ab initio calculations. Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, Vol. 4, No. 15, 2016, pp. 3157–3167.

  • [152] Suzuki, A., and T. Oku. First-principles calculation study of electronic structures and magnetic properties of Mn-doped perovskite crystals for solar cell applications. Japanese Journal of Applied Physics, Vol. 57, 2018, 02CE04-1–7.

  • [153] Suzuki, A., and T. Oku. Effects of transition metals incorporated into perovskite crystals on the electronic structures and magnetic properties by first-principles calculation. Heliyon, Vol. 4, No. 8, 2018, e00755-1–22.

  • [154] Suzuki, A., and T. Oku. First-principles calculation study of electronic structures of alkali metals (Li, K, Na and Rb)-incorporated formamidinium lead halide perovskite compounds. Applied Surface Science, Vol. 483, 2019, pp. 912–921.

  • [155] Weber, D. Z. CH3NH3PbX3, ein Pb(II)-system mit kubischer perowskitstruktur / CH3NH3PbX3, a Pb(II)-system with cubic perovskite structure. Zeitschrift für Naturforschung B, Vol. 33, No. 12, 1978, pp. 1443–1445. (in German)

  • [156] Poglitsch, A. and D. Weber. Dynamic disorder in methylammoniumtrihalogenoplumbates (II) observed by millimeter-wave spectroscopy. Journal of Chemical Physics, Vol. 87, No. 11, 1987, pp. 6373–6378.

  • [157] Onoda-Yamamuro, N., T. Matsuo, and H. Suga. Calorimetric and IR spectroscopic studies of phase transitions in methylammonium trihalogenoplumbates (II). Journal of Physics and Chemistry of Solids, Vol. 51, No. 12, 1990, pp. 1383–1395.

  • [158] Kawamura, Y., H. Mashiyama, and K. Hasebe. Structural study on cubic–tetragonal transition of CH3NH3PbI3. Journal of the Physical Society of Japan, Vol. 71, No. 7, 2002, pp. 1694–1697.

  • [159] Ren, Y., I. W. H. Oswald, X. Wang, G. T. McCandless, and J. Y. Chan. Orientation of organic cations in hybrid inorganic-organic perovskite CH3NH3PbI3 from subatomic resolution single crystal neutron diffraction structural studies. Crystal Growth & Design, Vol. 16, No. 5, 2016, pp. 2945–2951.

  • [160] Weller, M. T., O. J. Weber, P. F. Henry, A. M. Di Pumpo, and T. C. Hansen. Complete structure and cation orientation in the perovskite photovoltaic methylammonium lead iodide between 100 and 352 K. Chemical Communications (Cambridge), Vol. 51, No. 20, 2015, pp. 4180–4183.

  • [161] Stoumpos, C. C., C. D. Malliakas, and M. G. Kanatzidis. Semi-conducting tin and lead iodide perovskites with organic cations: Phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorganic Chemistry, Vol. 52, No. 15, 2013, pp. 9019–9038.

  • [162] Momma, K., and F. Izumi. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography, Vol. 44, No. 6, 2011, pp. 1272–1276.

  • [163] Motta, C., F. El-Mellouhi, S. Kais, N. Tabet, F. Alharbi, and S. Sanvito, Revealing the role of organic cations in hybrid halide perovskite CH3NH3PbI3. Nature Communications, Vol. 6, 2015, 7026-1-7.

  • [164] Brivio, F., J. M. Frost, J. M. Skelton, A. J. Jackson, O. J. Weber, M. T. Weller, et al. Lattice dynamics and vibrational spectra of the orthorhombic, tetragonal, and cubic phases of methylammonium lead iodide. Physical Review B: Condensed Matter and Materials Physics, Vol. 91, 2015, 144308-1–8.

  • [165] Zhou, Y., A. L. Vasiliev, W. Wu, M. Yang, S. Pang, K. Zhu, and N. P. Padture. Crystal morphologies of organolead trihalide in mesoscopic/planar perovskite solar cells. Journal of Physical Chemistry Letters, Vol. 6, No. 12, 2015, pp. 2292–2297.

  • [166] Zhou, Y., H. Sternlicht, and N. P. Padture. Transmission electron microscopy of halide perovskite materials and devices. Joule, Vol. 3, No. 3, 2019, pp. 641–661.

  • [167] Weller, M. T., O. J. Weber, J. M. Frost, and A. Walsh. Cubic perovskite structure of black formamidinium lead iodide, -[HC(NH2)2]PbI3, at 298 K. Journal of Physical Chemistry Letters, Vol. 6, No. 16, 2015, pp. 3209–3212.

  • [168] Zhou, Y., Z. Zhou, M. Chen, Y. Zong, J. Huang, S. Pang, and N. P. Padture. Doping and alloying for improved perovskite solar cells. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, Vol. 4, No. 45, 2016, pp. 17623–17635.

  • [169] Mashiyama, H., Y. Kawamura, E. Magome, and Y. Kubota. Displacive character of the cubic-tetragonal transition in CH3NH3PbX3. Journal of the Korean Physical Society, Vol. 42, 2003, pp. S1026–S1029.

  • [170] Yamada, K., K. Mikawa, T. Okuda, and K. S. Knight. Static and dynamic structures of CD3ND3GeCl3 studied by TOF high resolution neutron powder diffraction and solid state NMR. Journal of the Chemical Society, Dalton Transactions: Inorganic Chemistry, No. 10, 2002, pp. 2112–2118.

  • [171] Yamada, K., Y. Kuranaga, K. Ueda, S. Goto, T. Okuda, and Y. Furukawa. Phase transition and electric conductivity of ASnCl3 (A = Cs and CH3NH3). Bulletin of the Chemical Society of Japan, Vol. 71, No. 1, 1998, pp. 127–134.

  • [172] Schueller, E. C., G. Laurita, D. H. Fabini, C. C. Stoumpos, M. G. Kanatzidis, and R. Seshadri. Crystal structure evolution and notable thermal expansion in hybrid perovskites formamidinium tin iodide and formamidinium lead bromide. Inorganic Chemistry, Vol. 57, No. 2, 2018, pp. 695–701.

  • [173] Sutton, R. J., M. R. Filip, A. A. Haghighirad, N. Sakai, B. Wenger, F. Giustino, and H. J. Snaith. Cubic or orthorhombic? Revealing the crystal structure of metastable black-phase CsPbI3 by theory and experiment. ACS Energy Letters, Vol. 3, No. 8, 2018, pp. 1787–1794.

  • [174] Rodová, M., J. Brožek, K. Knížek, and K. Nitsch. Phase transitions in ternary caesium lead bromide. Journal of Thermal Analysis and Calorimetry, Vol. 71, No. 2, 2003, pp. 667–673.

  • [175] Chung, I., J. H. Song, J. Im, J. Androulakis, C. D. Malliakas, H. Li, et al. CsSnI3: Semiconductor or metal? High electrical conductivity and strong near-infrared photoluminescence from a single material. High hole mobility and phase-transitions. Journal of the American Chemical Society, Vol. 134, No. 20, 2012, pp. 8579–8587.

  • [176] Scaife, D. E., P. F. Weller, and W. G. Fisher. Crystal preparation and properties of cesium tin(II) trihalides. Journal of Solid State Chemistry, Vol. 9, No. 3, 1974, pp. 308–314.

  • [177] Thiele, G., H. W. Rotter, and K. D. Schmidt. Kristallstrukturen und phasentransformationen von caesiumtrihalogenogermanaten(II) CsGeX3 (X = Cl, Br, I). Zeitschrift fur Anorganische und Allgemeine Chemie, Vol. 545, No. 2, 1987, pp. 148–156. (in German)

  • [178] Thiele, G., H. W. Rotter, and K. D. Schmidt. Die Kristallstrukturen und phasentransformationen des tetramorphen RbGel3. Zeitschrift fur Anorganische und Allgemeine Chemie, Vol. 571, No. 1, 1989, pp. 60–68. (in German)

  • [179] Thiele, G., H. W. Rotter, and K. D. Schmidt. Die Kristallstrukturen und phasentransformationen von RbGeBr3. Zeitschrift fur Anorganische und Allgemeine Chemie, Vol. 559, No. 1, 1988, pp. 7–16. (in German)

  • [180] Pan, Z., H. Rao, I. Mora-Seró, J. Bisquert, and X. Zhong. Quantum dot-sensitized solar cells. Chemical Society Reviews, Vol. 47, No. 20, 2018, pp. 7659–7702.

  • [181] Galar, P., P. Piatkowski, T. T. Ngo, M. Gutiérrez, I. Mora-Seró, and A. Douhal. Perovskite-quantum dots interface: Deciphering its ultrafast charge carrier dynamics. Nano Energy, Vol. 49, 2018, pp. 471–480.

  • [182] Slavney, A. H., T. Hu, A. M. Lindenberg, and H. I. Karunadasa. A bismuth-halide double perovskite with long carrier recombination lifetime for photovoltaic applications. Journal of the American Chemical Society, Vol. 138, No. 7, 2016, pp. 2138–2141.

  • [183] McClure, E. T., M. R. Ball, W. Windl, and P. M. Woodward. Cs2 AgBiX6 (X = Br, Cl): New visible light absorbing, lead-free halide perovskite semiconductors. Chemistry of Materials, Vol. 28, No. 5, 2016, pp. 1348–1354.

  • [184] Zhou, J., Z. Xia, M. S. Molokeev, X. Zhang, D. Peng, and Q. Liu. Composition design, optical gap and stability investigations of lead-free halide double perovskite Cs2AgInCl6. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, Vol. 5, No. 29, 2017, pp. 15031–15037.

  • [185] Majher, J. D., M. B. Gray, T. A. Strom, and P. M. Woodward. Cs2NaBiCl6 :Mn2+—A new orange-red halide double perovskite phosphor. Chemistry of Materials, Vol. 31, No. 5, 2019, pp. 1738–1744.

  • [186] Wei, F., Z. Deng, S. Sun, F. Zhang, D. M. Evans, G. Kieslich, et al. Synthesis and properties of a lead-free hybrid double perovskite: (CH3NH3)2AgBiBr6. Chemistry of Materials, Vol. 29, 2017, pp. 1089–1094.

  • [187] Wei, F., Z. Deng, S. Sun, F. Xie, G. Kieslich, D. M. Evans, et al. The synthesis, structure and electronic properties of a lead-free hybrid inorganic–organic double perovskite (MA)2KBiCl6 (MA = methylammonium). Materials Horizons, Vol. 3, No. 4, 2016, pp. 328–332.

  • [188] Sabry-Grant, R., M. Vickers, and J. K. Cockcroft. A detailed study of the variation in lattice parameter and structure with temperature and dilution in yttrium-substituted holmium hexachloro-elpasolite Cs2NaYxHo1−xCl6. Zeitschrift für Kristallographie, Vol. 222, No. 7, 2007, pp. 356–364.

  • [189] Acevedo, R. and V. Poblete. Synthesis and X-ray powder diffraction study of the elpasolite Cs2NaCeCl6. Powder Diffraction, Vol. 10, No. 4, 1995, pp. 241–242.

  • [190] Poblete, V., R. Acevedo, and P. A. Tanner, Spectroscopic studies, theoretical models and structural characterization. I. The elpasolites Cs2NaLnCl6, where Ln3+ = Er3+, Yb3+, II. Synthesis and X-ray powder diffraction of the elpasolites Cs2NaSmCl6. Revista Mexicana de Fisica, Vol. 44S1, 1998, pp. 29-32.

  • [191] Reber, C., H. U. Guedel, G. Meyer, T. Schleid, and C. A. Daul. Optical spectroscopic and structural properties of V3+-doped fluoride, chloride, and bromide elpasolite lattices. Inorganic Chemistry, Vol. 28, No. 16, 1989, pp. 3249–3258.

  • [192] Meyer, G., S. J. Hwu, and J. D. Corbett. Low-temperature crystal growth of Cs2LiLuCl6−II and Cs2KScCl6 under reducing conditions and their structural refinement. Zeitschrift fur Anorganische und Allgemeine Chemie, Vol. 535, No. 4, 1986, pp. 208–212.

  • [193] Barbier, P., M. Drache, G. Mairesse, and J. Ravez. Phase transitions in a Cs2−xK1+xBiCl6 solid solution. Journal of Solid State Chemistry, Vol. 42, No. 2, 1982, pp. 130–135.

  • [194] Friedrich, G., H. Fink, and H. J. Seifert. Uber alkalihexachlorochromate(III): Na3CrCl6. Zeitschrift fur Anorganische und Allgemeine Chemie, Vol. 548, No. 5, 1987, pp. 141–150.

  • [195] Villafuerte-Castrejón, M. E., M. R. E. Yáñez, J. Gómez-Lara, and R. Pomés. Crystal structure of Cs2KTbCl6 and Cs2KEuCl6 by powder X-ray diffraction. Journal of Solid State Chemistry, Vol. 132, No. 1, 1997, pp. 1–5.

  • [196] P. Gaille, and J. C. Cousseins. Chimie minérale. Nouvelles pérovskites chlorées du type Cs2KB3Cl6. Comptes Rendus des Seances de l’Academie des Sciences, Serie C: Sciences Chimiques, Vol. 272, 1971, pp. 1328–1330.

  • [197] Bohnsack, A., and G. Meyer. Crystal structure of dirubidium lithium dysprosium(III) hexabromide, Rb2LiDyBr6. Zeitschrift für Kristallographie. New Crystal Structures, Vol. 212, No. 1, 1997, p. 2.

  • [198] Meyer, G., and E. Dietzel. Zur struktursystematik der elpasolithfamilie: Neue chloride A+2B+M3+Cl6 (A+ = Rb, TI, In, K; B+ = Li, Ag, Na) Revue de Chimie Minerale, Vol. 16, 1979, pp. 189–202.

  • [199] Qiu, L., L. K. Ono, and Y. Qi. Advances and challenges to the commercialization of organic–inorganic halide perovskite solar cell technology. Materials Today Energy, Vol. 7, 2018, pp. 169–189.

  • [200] Giustino, F., and H. J. Snaith. Toward lead-free perovskite solar cells. ACS Energy Letters, Vol. 1, No. 6, 2016, pp. 1233–1240.

  • [201] Savory, C. N., and A. Walsh. ans D.O. Scanlon. Can Pb-free halide double perovskites support high-efficiency solar cells? ACS Energy Letters, Vol. 1, 2016, pp. 949–955.

  • [202] Yang, P., F. P. Doty, M. A. Rodriguez, M. R. Sanchez, X. Zhou, and K. S. Shah, The synthesis and structure of elpasolite halide scintillators. Materials Research Society Symposium Proceedings, Vol. 1164, 2009, pp. 185-192.

  • [203] Gundiah, G., K. Brennan, Z. Yan, E. C. Samulon, G. Wu, G. A. Bizarri, et al. Structure and scintillation properties of Ce3+-activated Cs2NaLaCl6, Cs3LaCl6, Cs2NaLaBr6, Cs3LaBr6, Cs2NaLaI6 and Cs3LaI6. Journal of Luminescence, Vol. 149, 2014, pp. 374–384.

  • [204] Wei, H., M. H. Du, L. Stand, Z. Zhao, H. Shi, M. Zhuravleva, and C. L. Melcher. Scintillation properties and electronic structures of the intrinsic and extrinsic mixed elpasolites Cs2NaRBr3I3 (R = La, Y). Physical Review Applied, Vol. 5, No. 2, 2016, pp. 024008-1-13.

  • [205] Mitzi, D. B. Templating and structural engineering in organic–inorganic perovskites. Journal of the Chemical Society, Dalton Transactions: Inorganic Chemistry, No. 1, 2001, pp. 1–12.

  • [206] Xiao, Z., W. Meng, J. Wang, D. B. Mitzi, and Y. Yan. Searching for promising new perovskite-based photovoltaic absorbers: The importance of electronic dimensionality. Materials Horizons, Vol. 4, No. 2, 2017, pp. 206–216.

  • [207] Tang, G., Z. Xiao, H. Hosono, T. Kamiya, D. Fang, and J. Hong. Layered halide double perovskites Cs3+nM(II)nSb2X9+3n (M = Sn, Ge) for photovoltaic applications. Journal of Physical Chemistry Letters, Vol. 9, No. 1, 2018, pp. 43–48.

  • [208] Mao, L., W. Ke, L. Pedesseau, Y. Wu, C. Katan, J. Even, et al. Hybrid Dion-Jacobson 2D lead iodide perovskites. Journal of the American Chemical Society, Vol. 140, No. 10, 2018, pp. 3775–3783.

  • [209] Stoumpos, C. C., D. H. Cao, D. J. Clark, J. Young, J. M. Rondinelli, J. I. Jang, J. T. Hupp, and M. G. Kanatzidis. Ruddlesden–Popper hybrid lead iodide perovskite 2D homologous semiconductors. Chemistry of Materials, Vol. 28, No. 8, 2016, pp. 2852–2867.

  • [210] Cortecchia, D., H. A. Dewi, J. Yin, A. Bruno, S. Chen, T. Baikie, et al. Lead-free MA2CuClxBr4−x hybrid perovskites. Inorganic Chemistry, Vol. 55, No. 3, 2016, pp. 1044–1052.

  • [211] Kassou, S., A. Kaiba, P. Guionneau, and A. Belaaraj. Organic-inorganic hybrid perovskite (C6H5(CH2)2NH3)2CdCl4: Synthesis, structural and thermal properties. Journal of Structural Chemistry, Vol. 57, No. 4, 2016, pp. 737–743.

  • [212] Mao, L., S. M. L. Teicher, C. C. Stoumpos, R. M. Kennard, R. A. DeCrescent, G. Wu, et al. Chemical and structural diversity of hybrid layered double perovskite halides. Journal of the American Chemical Society, Vol. 141, No. 48, 2019, pp. 19099–19109.

  • [213] Kihara, K., and T. Sudo. The structure of α-type cesium antimony nonachloride, Cs3Sb2Cl9 Zeitschrift für Kristallographie, Vol. 134, 1971, pp. 142–144.

  • [214] Kihara, K., and T. Sudo. The crystal structures of β-Cs3Sb2Cl9 and Cs3Bi2Cl9. Acta Crystallographica. Section B, Structural Crystallography and Crystal Chemistry, Vol. 30, No. 4, 1974, pp. 1088–1093.

  • [215] Jongen, L., T. Gloger, J. Beekhuizen, and G. Meyer. Divalent titanium: The halides ATiX3 (A = K, Rb, Cs; X = Cl, Br, I). Zeitschrift fur Anorganische und Allgemeine Chemie, Vol. 631, No. 2-3, 2005, pp. 582–586.

  • [216] Meyer, G., D. J. Hinz, and U. Floerke. Crystal structure of caesium titanium tribromide, CsTiBr3. Zeitschrift für Kristallographie, Vol. 208, 1993, pp. 370–371.

  • [217] Zhang, J., and J. D. Corbett. Synthesis and structure of the novel layered phase CsTi2Cl7. Zeitschrift fur Anorganische und Allgemeine Chemie, Vol. 58, No. 1, 1990, pp. 36–44.

  • [218] Zhu, X. H., N. Mercier, M. Allain, P. Frère, P. Blanchard, J. Roncali, and A. Riou. Crystal structure of (NH3R–NH3)(NH3R–NH2)PbI5 (R=5,5′-bis(ethylsulfanyl)-2,2′-bithiophene): NH+3· · · NH2 interaction as a tool to reach densely packed organic layers in organic-inorganic perovskites. Journal of Solid State Chemistry, Vol. 177, No. 4-5, 2004, pp. 1067–1071.

  • [219] Zhou, J., J. Luo, X. Rong, P. Wei, M. S. Molokeev, Y. Huang, et al. Lead-free perovskite derivative Cs2SnCl6−xBrx single crystals for narrowband photodetectors. Advanced Optical Materials, Vol. 7, No. 10, 2019, p. 1900139.

  • [220] Brill, T. B., R. C. Gearhart, and W. A. Welsh. Crystal structures of M2SnCl6 salts. An analysis of the “crystal field effect” in their nuclear quadrupole resonance and vibrational spectra. Journal of Magnetic Resonance (San Diego, Calif.), Vol. 13, 1974, pp. 27–37.

  • [221] Velázquez, M., A. Ferrier, S. Péchev, P. Gravereau, J. P. Chaminade, X. Portier, and R. Moncorgé. Growth and characterization of pure and Pr3+-doped Cs4PbBr6 crystals. Journal of Crystal Growth, Vol. 310, No. 24, 2008, pp. 5458–5463.

  • [222] Cenzual, K., L. M. Gelato, M. Penzo, and E. Parté. Overlooked trigonal symmetry in structures reported with monoclinic centred Bravais lattices; trigonal description of Li8Pb3, PtTe, Pt3Te4, Pt2Te3, LiFe6Ge4, LiFe6Ge5, CaGa6Te10 and La3.266Mn1.1S6. Zeitschrift für Kristallographie, Vol. 193, 1990, pp. 217–242.

  • [223] Sinram, D., C. J. Brendal, and B. Krebs. Hexa-iodoanions of titanium, zirconium, hafnium, palladium and platinum: Preparation, properties and crystal structures of the caesium salts. Inorganica Chimica Acta, Vol. 64, 1982, pp. L131–L132.

  • [224] Wendling, E., and J. De Lavillandre. Caractérisation d’especes chloroperoxytitaniques en solution aqueuse chlorhydrique, perchlorique et en solution dans l’acide formique. Chloroperoxytitanates du type M2(TiO2Cl4,H2O)(M = Rb, Cs) Bulletin de la Société Chimique de France, Vol. 2, 1967, pp. 2142–2148.

  • [225] Maughan, A. E., A. M. Ganose, M. M. Bordelon, E. M. Miller, D. O. Scanlon, and J. R. Neilson. Defect tolerance to intolerance in the vacancy-ordered double perovskite semiconductors Cs2SnI6 and Cs2TeI6. Journal of the American Chemical Society, Vol. 138, No. 27, 2016, pp. 8453–8464.

  • [226] Maughan, A. E., A. M. Ganose, M. A. Almaker, D. O. Scanlon, and J. R. Neilson. Tolerance factor and cooperative tilting effects in vacancy-ordered double perovskite halides. Chemistry of Materials, Vol. 30, No. 11, 2018, pp. 3909–3919.

  • [227] Abriel, W. and E. J. Zehnder, Vibronic coupling and dynamically distorted structures in hexahalogenotellurates(IV): low temperature X-ray diffraction (300-160 K) and FTIR-spectroscopic (300-5 K) Results [1]. Zeitschrift für Naturforschung, Vol. 42b, 1987, pp. 1273-1281.

  • [228] Thiele, G., C. Mrozek, and K. Wittmann, On Hexaiodoplatinates(IV) M2PtI6 (M = K, Rb, Cs, NH4, TI) – Preparation, properties and structural data. Zeitschrift für Naturforschung, Vol. 38, 1983, pp. 905-910.

  • [229] Restori, R., and D. Schwarzenbach. Anharmonic motion vs chemical bonding: On the interpretation of electron densities determined by X-ray diffraction. Acta Crystallographica. Section A, Foundations of Crystallography, Vol. 52, No. 3, 1996, pp. 369–378.

  • [230] Yamada, K., H. Sera, S. Sawada, H. Tada, T. Okada, and H. Tanaka. Reconstructive phase transformation and kinetics of Cs3Sb2I9 by means of Rietveld analysis of X-Ray diffraction and 127I NQR. Journal of Solid State Chemistry, Vol. 134, No. 2, 1997, pp. 319–325.

  • [231] Arakcheeva, A. V., G. Chapuis, and M. Meyer. The LT phase of Cs3Bi2I9. Zeitschrift für Kristallographie, Vol. 216, 2001, pp. 199–205.

  • [232] Xu, F., T. Zhang, G. Li, and Y. Zhao. Mixed cation hybrid lead halide perovskites with enhanced performance and stability. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, Vol. 5, No. 23, 2017, pp. 11450–11461.

  • [233] Rodríguez-Romero, J., B. C. Hames, I. Mora-Seró, and E. M. Barea. Conjugated organic cations to improve the optoelectronic properties of 2D/3D perovskites. ACS Energy Letters, Vol. 2, No. 9, 2017, pp. 1969–1970.

  • [234] Rodríguez-Romero, J., B. Clasen Hames, P. Galar, A. Fakharuddin, I. Suarez, L. Schmidt-Mende, et al. Tuning optical/electrical properties of 2D/3D perovskite by the inclusion of aromatic cation. Physical Chemistry Chemical Physics, Vol. 20, No. 48, 2018, pp. 30189–30199.

  • [235] Fan, J., Y. Ma, C. Zhang, C. Liu, W. Li, R.E.I. Schropp, and Y. Mai, Thermodynamically self-healing 1D-3D hybrid perovskite solar cells. Advanced Energy Materials, Vol. 8, 2018, 1703421-1-8.

  • [236] Gong, J., M. Flatken, A. Abate, J. P. Correa-Baena, I. Mora-Seró, M. Saliba, and Y. Zhou. The bloom of perovskite optoelectronics: Fundamental science matters. ACS Energy Letters, Vol. 4, No. 4, 2019, pp. 861–865.

  • [237] Lee, B., C. C. Stoumpos, N. Zhou, F. Hao, C. Malliakas, C. Y. Yeh, et al. Air-stable molecular semiconducting iodosalts for solar cell applications: Cs2SnI6 as a hole conductor. Journal of the American Chemical Society, Vol. 136, No. 43, 2014, pp. 15379–15385.

  • [238] Maughan, A. E., A. M. Ganose, D. O. Scanlon, and J. R. Neilson. Perspectives and design principles of vacancy-ordered double perovskite halide semiconductors. Chemistry of Materials, Vol. 31, No. 4, 2019, pp. 1184–1195.

  • [239] Dai, W. B., S. Xu, J. Zhou, J. Hu, K. Huang, and M. Xu. Lead-free, stable, and effective double FA4GeIISbIIICl12 perovskite for photovoltaic applications. Solar Energy Materials and Solar Cells, Vol. 192, 2019, pp. 140–146.

  • [240] Ju, M. G., M. Chen, Y. Zhou, H. F. Garces, J. Dai, L. Ma, et al. Earth-abundant nontoxic titanium(IV)-based vacancy-ordered double perovskite halides with tunable 1.0 to 1.8 eV bandgaps for photovoltaic applications. ACS Energy Letters, Vol. 3, No. 2, 2018, pp. 297–304.

  • [241] Willett, R., H. Place, and M. Middleton. Crystal structures of three new copper(II) halide layered perovskites: Structural, crystallographic, and magnetic correlations. Journal of the American Chemical Society, Vol. 110, No. 26, 1988, pp. 8639–8650.

  • [242] Pabst, I., H. Fuess, and J. W. Bats, Structure of monomethylammonium tetrachlorocuprate at 297 and 100 K. Acta Crystallographica. Section C, Crystal Structure Communications, Vol. 43, No. 3, 1987, pp. 413–416.

  • [243] Zuo C., and L. Ding. An 80.11% FF record achieved for perovskite solar cells by using the NH4Cl additive. Nanoscale, Vol. 6, No. 17, 2014, pp. 9935–9938.

  • [244] Zhou, Y., O. S. Game, S. Pang, and N. P. Padture. Microstructures of organometal trihalide perovskites for solar cells: Their evolution from solutions and characterization. Journal of Physical Chemistry Letters, Vol. 6, No. 23, 2015, pp. 4827–4839.

  • [245] Zhou, Y., M. Yang, W. Wu, A. L. Vasiliev, K. Zhu, and N. P. Padture. Room-temperature crystallization of hybrid-perovskite thin films via solvent–solvent extraction for high-performance solar cells. Journal of Materials Chemistry A, Vol. 3, No. 15, 2015, pp. 8178–8184.

  • [246] Oku, T., Y. Ohishi, and N. Ueoka. Highly (100)-oriented CH3NH3PbI3 (Cl) perovskite solar cells prepared with NH4Cl using an air blow method. RSC Advances, Vol. 8, No. 19, 2018, pp. 10389–10395.

  • [247] Oku, T., Y. Ohishi, A. Suzuki, and Y. Miyazawa. Effects of NH4Cl addition to perovskite CH3NH3PbI3 photovoltaic devices. Journal of the Ceramic Society of Japan, Vol. 125, No. 4, 2017, pp. 303–307.

  • [248] Yu, H., F. Wang, F. Xie, W. Li, J. Chen, and N. Zhao. The role of chlorine in the formation process of “CH3NH3PbI3−xClx” perovskite. Advanced Functional Materials, Vol. 24, 2014, pp. 7102–7108.

  • [249] Dualeh, A., N. Tétreault, T. Moehl, P. Gao, M. K. Nazeeruddin, and M. Grätzel. Effect of annealing temperature on film morphology of organic-inorganic hybrid perovskite solid-state solar cells. Advanced Functional Materials, Vol. 24, No. 21, 2014, pp. 3250–3258.

  • [250] McLeod, J. A., Z. Wu, B. Sun, and L. Liu. The influence of the I/Cl ratio on the performance of CH3NH3PbI3−xClx-based solar cells: why is CH3NH3I : PbCl2 = 3 : 1 the “magic” ratio? Nanoscale, Vol. 8, No. 12, 2016, pp. 6361–6368.

  • [251] Oku, T., and Y. Ohishi. Effects of annealing on CH3NH3PbI3(Cl) perovskite photovoltaic devices. Journal of the Ceramic Society of Japan, Vol. 126, No. 1, 2018, pp. 56–60.

  • [252] Umemoto, Y., A. Suzuki, and T. Oku. Effects of halogen doping on the photovoltaic properties of HC(NH2)2PbI3 perovskite solar cells. AIP Conference Proceedings, Vol. 1807, 2017, 020011-1–10.

  • [253] Oku, T., J. Yamanouchi, Y. Umemoto, and A. Suzuki. Dendritic structures of photovoltaic perovskite crystals. Materia Japan, Vol. 57, 2018, p. 601.

  • [254] Ivanov, I. L., A. S. Steparuk, M. S. Bolyachkina, D. S. Tsvetkov, A. P. Safronov, and A. Y. Zuev. Thermodynamics of formation of hybrid perovskite-type methylammonium lead halides. Journal of Chemical Thermodynamics, Vol. 116, 2018, pp. 253–258.

  • [255] Ju, D., Y. Dang, Z. Zhu, H. Liu, C. C. Chueh, X. Li, et al. Tunable band gap and long carrier recombination lifetime of stable mixed CH3NH3PbxSn1−xBr3 single crystals. Chemistry of Materials, Vol. 30, No. 5, 2018, pp. 1556–1565.

  • [256] Rietveld, M. A profile refinement method for nuclear and magnetic structures. Journal of Applied Crystallography, Vol. 2, No. 2, 1969, pp. 65–71.

  • [257] Fu, K., S. S. Lim, Y. Fang, P. P. Boix, N. Mathews, T. C. Sum, et al. Modulating CH3NH3PbI3 perovskite crystallization behavior through precursor concentration. Nano, Vol. 9, 2014, pp. 1440003-1-9.

  • [258] Ando, Y., T. Oku, and Y. Ohishi. Rietveld refinement of crystal structure of perovskite CH3NH3Pb(Sb)I3 solar cells. Japanese Journal of Applied Physics, Vol. 57, No. 2, 2018, 02CE02-1–5.

  • [259] Wang, R., J. Wang, S. Tan, Y. Duan, Z. K. Wang, and Y. Yang. Opportunities and challenges of lead-free perovskite optoelectronic devices. Trends in Chemistry, Vol. 1, No. 4, 2019, pp. 368–379.

  • [260] Izumi, F., and T. Ikeda. A Rietveld-analysis programm RIETAN-98 and its applications to zeolites. Materials Science Forum, Vol. 198, 2000, pp. 321–324.

  • [261] Hames, B. C., R. S. Sánchez, A. Fakharuddin, and I. Mora-Seró. A comparative study of light-emitting diodes based on all-inorganic perovskite nanoparticles (CsPbBr3) synthesized at room temperature and by a hot-injection method. ChemPlusChem, Vol. 83, 2018, pp. 294–299.

  • [262] Saliba, M., S. M. Wood, J. B. Patel, P. K. Nayak, J. Huang, J. A. Alexander-Webber, et al. Structured organic-inorganic perovskite toward a distributed feedback laser. Advanced Materials, Vol. 28, No. 5, 2016, pp. 923–929.

  • [263] Xu, X., Y. Zhong, and Z. Shao. Double perovskites in catalysis, electrocatalysis, and photo(electro)catalysis. Trends in Chemistry, Vol. 1, No. 4, 2019, pp. 410–424.

  • [264] Pan, S., P. Zhang, H. Zhu, J. Zhang, J. Pan, H. Chen, et al. Crystal growth, luminescence and scintillation properties of mixed Ce:Cs2LiLaxY1− xCl6 (0 < x 0.4) scintillators. Journal of Luminescence, Vol. 201, 2018, pp. 211–216.

  • [265] Detection properties and internal activity of newly developed La-containing scintillator crystals. Nuclear Instruments & Methods in Physics Research, Section A, Vol. 925, 2019, pp. 70–75.

  • [266] Khan, A., P.Q. Vuong, G. Rooh, H.J. Kim, and S. Kim. Crystal growth and Ce3+ concentration optimization in Tl2LaCl5: An excellent scintillator for the radiation detection. Journal of Alloys and Compounds, Vol. 827, 2020, pp. 154366-1-10.

OPEN ACCESS

Journal + Issues

Reviews on Advanced Materials Science is a fully peer-reviewed, open access, electronic journal that publishes significant, original and relevant works in the area of theoretical and experimental studies of advanced materials.

Search