Reliable disease biomarkers characterizing and identifying electrohypersensitivity and multiple chemical sensitivity as two etiopathogenic aspects of a unique pathological disorder

Dominique Belpomme 1 , 2 , Christine Campagnac 2 , 3  and Philippe Irigaray 2 , 4
  • 1 Paris V University Hospital, France
  • 2 European Cancer and Environment Research Institute (ECERI), Brussels, Belgium
  • 3 Hospital Director, seconded from Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
  • 4 Association for Research and Treatments Against Cancer (ARTAC), F-75015 Paris, France
Dominique Belpomme, Christine Campagnac and Philippe Irigaray
An erratum for this article can be found here:


Much of the controversy over the causes of electro-hypersensitivity (EHS) and multiple chemical sensitivity (MCS) lies in the absence of both recognized clinical criteria and objective biomarkers for widely accepted diagnosis. Since 2009, we have prospectively investigated, clinically and biologically, 1216 consecutive EHS and/or MCS-self reporting cases, in an attempt to answer both questions. We report here our preliminary data, based on 727 evaluable of 839 enrolled cases: 521 (71.6%) were diagnosed with EHS, 52 (7.2%) with MCS, and 154 (21.2%) with both EHS and MCS. Two out of three patients with EHS and/or MCS were female; mean age (years) was 47. As inflammation appears to be a key process resulting from electromagnetic field (EMF) and/or chemical effects on tissues, and histamine release is potentially a major mediator of inflammation, we systematically measured histamine in the blood of patients. Near 40% had a increase in histaminemia (especially when both conditions were present), indicating a chronic inflammatory response can be detected in these patients. Oxidative stress is part of inflammation and is a key contributor to damage and response. Nitrotyrosin, a marker of both peroxynitrite (ONOO°-) production and opening of the blood-brain barrier (BBB), was increased in 28% the cases. Protein S100B, another marker of BBB opening was increased in 15%. Circulating autoantibodies against O-myelin were detected in 23%, indicating EHS and MCS may be associated with autoimmune response. Confirming animal experiments showing the increase of Hsp27 and/or Hsp70 chaperone proteins under the influence of EMF, we found increased Hsp27 and/or Hsp70 in 33% of the patients. As most patients reported chronic insomnia and fatigue, we determined the 24 h urine 6-hydroxymelatonin sulfate (6-OHMS)/creatinin ratio and found it was decreased (<0.8) in all investigated cases. Finally, considering the self-reported symptoms of EHS and MCS, we serially measured the brain blood flow (BBF) in the temporal lobes of each case with pulsed cerebral ultrasound computed tomosphygmography. Both disorders were associated with hypoperfusion in the capsulothalamic area, suggesting that the inflammatory process involve the limbic system and the thalamus. Our data strongly suggest that EHS and MCS can be objectively characterized and routinely diagnosed by commercially available simple tests. Both disorders appear to involve inflammation-related hyper-histaminemia, oxidative stress, autoimmune response, capsulothalamic hypoperfusion and BBB opening, and a deficit in melatonin metabolic availability; suggesting a risk of chronic neurodegenerative disease. Finally the common co-occurrence of EHS and MCS strongly suggests a common pathological mechanism.

  • 1.

    Randolph TG. Human ecology and susceptibility to the chemical environment, ed. Springfield, IL: Charles C Thomas. 1962:148pp.

  • 2.

    Nethercott JR, Davidoff LL, Curbow B, Abbey H. Multiple chemical sensitivities syndrome: toward a working case definition. Arch Environ Health 1993;48(1):19–26.

  • 3.

    Multiple chemical sensitivity (MCS): a consensus. Arch Environ Health 1999;54(3):147–9.

  • 4.

    Genuis SJ. Sensitivity-related illness: the escalating pandemic of allergy, food intolerance and chemical sensitivity. Sci Total Environ 2010;408(24):6047–61.

  • 5.

    Rea WJ, Pan Y, Fenyves EJ, Sujisawa I, Suyama H, et al. Electromagnetic field sensitivity. J Bioelectricity 1991;10(1–2):241–56.

  • 6.

    Bergqvist U, Vogel E, Editors. Possible health implications of subjective symptoms and electromagnetic fields. A report prepared by a European group of experts for the European Commission, DGV. Arbete och Hälsa, 1997:19. Swedish National Institute for Working Life, Stockholm, Sweden. Available at:

  • 7.

    Santini R, Seigne M, Bonhomme-Faivre L, Bouffet S, Defrasme E, et al. Symptoms experienced by users of digital cellular phones: a study of a French engineering school. Electromagn Biol Med 2002;21(1):81–8.

  • 8.

    Santini R, Santini P, Le Ruz P, Danze JM, Seigne M. Survey study of people living in the vicinity of cellular phone base. Electromagn Biol Med 2003;22(1):41–9.

  • 9.

    Hansson Mild K, Repacholi M, Van Deventer E, Ravazzani P, editors. 2006. In: Proceedings, International Workshop on EMF Hypersensitivity, Prague, Czech Republic, October 25–27, 2004. Milan: World Health Organization. Working group report, 15–26. Available at:

  • 10.

    Rubin GJ, Nieto-Hernandez R, Wessely S. Idiopathic environmental intolerance attributed to electromagnetic fields (formerly’electromagnetic hypersensitivity’): an updated systematic review of provocation studies. Bioelectromagnetics 2010;31(1):1–11.

  • 11.

    Bornschein S, Förstl H, Zilker T. Idiopathic environmental intolerances (formerly multiple chemical sensitivity) psychiatric perspectives. J Intern Med 2001;250(4):309–21.

  • 12.

    Röösli M. Radiofrequency electromagnetic field exposure and non-specific symptoms of ill health: a systematic review. Environ Res 2008;107(2):277–87.

  • 13.

    Röösli M, Mohler E, Frei P. Sense and sensibility in the context of radiofrequency electromagnetic field exposure. C R physique 2010;11:576–84.

  • 14.

    Baliatsas C, Van Kamp I, Bolte J, Schipper M, Yzermans J, et al. Non-specific physical symptoms and electromagnetic field exposure in the general population: can we get more specific? A systematic review. Environ Int 2012;41:15–28.

  • 15.

    Genuis SJ, Lipp CT. Electromagnetic hypersensitivity: fact or fiction? Sci Total Environ 2012;414:103–12.

  • 16.

    Köteles F, Szemerszky R, Gubányi M, Körmendi J, Szekrényesi C, et al. Idiopathic environmental intolerance attributed to electromagnetic fields (IEI-EMF) and electrosensibility (ES) – are they connected? Int J Hyg Environ Health 2013;216(3): 362–70.

  • 17.

    Marc-Vergnes JP. Electromagnetic hypersensitivity: the opinion of an observer neurologist. C R Physique 2010;11:564–75.

  • 18.

    Carpenter DO. Excessive exposure to radiofrequency electromagnetic fields may cause the development of electrohypersensitivity. Altern Ther Health Med 2014;20(6):40–2.

  • 19.

    Hagström M, Auranen J, Ekman R. Electromagnetic hypersensitive Finns: symptoms, perceived sources and treatments, a questionnaire study. Pathophysiology 2013;20(2):117–22.

  • 20.

    De Luca C, Raskovic D, Pacifico V, Thai JC, Korkina L. The search for reliable biomarkers of disease in multiple chemical sensitivity and other environmental intolerances. Int J Environ Res Public Health 2011;8(7):2770–97.

  • 21.

    Baliatsas C, Van Kamp I, Lebret E, Rubin GJ. Idiopathic environmental intolerance attributed to electromagnetic fields (IEI-EMF): a systematic review of identifying criteria. BMC Public Health 2012;12:643.

  • 22.

    Jorgensen LG. Transcranial Doppler ultrasound for cerebral perfusion. Acta Physiol Scand Suppl 1995;625:1–44.

  • 23.

    Texier JJ, Grunitsky E, Lepetit JM, Lajoix M, Cognard J, et al. Variation in the functional circulatory value measured by ultrasonic cerebral tomosphygmography during the administration of general intravenous anesthesia. Agressologie 1986;27(6):487–94.

  • 24.

    Parini M, Lepetit JM, Dumas M, Tapie P, Lemoine J. Ultrasonic cerebral tomosphygmography. Application in 143 healthy subjects. Agressologie 1984;25(5):585–9.

  • 25.

    Lajoix M, Bechonnet G, Lepetit JM. Ultrasonic cerebral tomosphygmography and cerebral perfusion pressure. Agressologie 1983;24(9):425–7.

  • 26.

    Albert PJ, Proal AD, Marshall TG. Vitamin D: the alternative hypothesis. Autoimmun Rev 2009;8(8):639–44.

  • 27.

    Tuohimaa P, Keisala T, Minasyan A, Cachat J, Kalueff A. Vitamin D, nervous system and aging. Psychoneuroendocrinology 2009;34(Suppl 1):S278–86.

  • 28.

    Eyles DW, Feron F, Cui X, Kesby JP, Harms LH, et al. Developmental vitamin D deficiency causes abnormal brain development. Psychoneuroendocrinology 2009;34(Suppl 1):S247–57.

  • 29.

    Rocha SM, Pires J, Esteves M, Graça B, Bernardino L. Histamine: a new immunomodulatory player in the neuron-glia crosstalk. Front Cell Neurosci 2014;8:120.

  • 30.

    Greaves MW, Sabroe RA. Histamine: the quintessential mediator. J Dermatol 1996;23(11):735–40.

  • 31.

    Abbott NJ. Inflammatory mediators and modulation of blood-brain barrier permeability. Cell Mol Neurobiol 2000;20(2):131–47.

  • 32.

    Mayhan WG. Role of nitric oxide in histamine-induced increases in permeability of the blood-brain barrier. Brain Res 1996;743(1–2):70–6.

  • 33.

    Tan KH, Harrington S, Purcell WM, Hurst RD. Peroxynitrite mediates nitric oxide-induced blood-brain barrier damage. Neurochem Res 2004;29(3):579–87.

  • 34.

    Phares TW, Fabis MJ, Brimer CM, Kean RB, Hooper DC. A peroxynitrite-dependent pathway is responsible for blood-brain barrier permeability changes during a central nervous system inflammatory response: TNF-alpha is neither necessary nor sufficient. J Immunol 2007;178(11):7334–43.

  • 35.

    Pacher P, Beckman JS, Liaudet L. Nitric oxide and peroxynitrite in health and disease. Physiol Rev 2007;87(1):315–424.

  • 36.

    Yang S, Chen Y, Deng X, Jiang W, Li B, et al. Hemoglobin-induced nitric oxide synthase overexpression and nitric oxide production contribute to blood-brain barrier disruption in the rat. J Mol Neurosci 2013;51(2):352–63.

  • 37.

    Kanner AA, Marchi N, Fazio V, Mayberg MR, Koltz MT, et al. Serum S100beta: a noninvasive marker of blood-brain barrier function and brain lesions. Cancer 2003;97(11):2806–13.

  • 38.

    Kapural M, Krizanac-Bengez Lj, Barnett G, Perl J, Masaryk T, et al. Serum S-100beta as a possible marker of blood-brain barrier disruption. Brain Res 2002;940(1–2):102–4.

  • 39.

    Marchi N, Cavaglia M, Fazio V, Bhudia S, Hallene K, et al. Peripheral markers of blood-brain barrier damage. Clin Chim Acta 2004;342(1–2):1–12.

  • 40.

    Koh SX, Lee JK. S100B as a marker for brain damage and blood-brain barrier disruption following exercise. Sports Med 2014;44(3):369–85.

  • 41.

    Gunaydin H, Houk KN. Mechanisms of peroxynitrite-mediated nitration of tyrosine. Chem Res Toxicol 2009;22(5):894–8.

  • 42.

    de Pomerai D, Daniells C, David H, Allan J, Duce I, et al. Non-thermal heat-shock response to microwaves. Nature 2000;405(6785):417–8.

  • 43.

    French PW, Penny R, Laurence JA, McKenzie DR. Mobile phones, heat shock proteins and cancer. Differentiation 2001;67(4–5):93–7.

  • 44.

    Blank M, Goodman R. Electromagnetic fields stress living cells. Pathophysiology 2009;16(2–3):71–8.

  • 45.

    Yang XS, He GL, Hao YT, Xiao Y, Chen CH, et al. Exposure to 2.45 GHz electromagnetic fields elicits an HSP-related stress response in rat hippocampus. Brain Res Bull 2012;88(4):371–8.

  • 46.

    Kesari KK, Meena R, Nirala J, Kumar J, Verma HN. Effect of 3G cell phone exposure with computer controlled 2-D stepper motor on non-thermal activation of the hsp27/p38MAPK stress pathway in rat brain. Cell Biochem Biophys 2014;68(2):347–58.

  • 47.

    Berberian PA, Myers W, Tytell M, Challa V, Bond MG. munohistochemical localization of heat shock protein-70 in normal-appearing and atherosclerotic specimens of human arteries. Am J Pathol 1990;136(1):71–80.

  • 48.

    Georgopoulos C, Welch WJ. Role of the major heat shock proteins as molecular chaperones. Annu Rev Cell Biol 1993;9:601–34.

  • 49.

    Hartl FU. Molecular chaperones in cellular protein folding. Nature 1996;381(6583):571–9.

  • 50.

    Sabirzhanov B, Stoica BA, Hanscom M, Piao CS, Faden AI. Over-expression of HSP70 attenuates caspase-dependent and caspase-independent pathways and inhibits neuronal apoptosis. J Neurochem 2012;123(4):542–54.

  • 51.

    Yenari MA, Liu J, Zheng Z, Vexler ZS, Lee JE, et al. Antiapoptotic and anti-inflammatory mechanisms of heat-shock protein protection. Ann NY Acad Sci 2005;1053:74–83.

  • 52.

    Kelly S, Yenari MA. Neuroprotection: heat shock proteins. Curr Med Res Opin 2002;18(Suppl 2):s55–60.

  • 53.

    Leszczynski D, Joenväärä S, Reivinen J, Kuokka R. Non-thermal activation of the hsp27/p38MAPK stress pathway by mobile phone radiation in human endothelial cells: molecular mechanism for cancer- and blood-brain barrier-related effects. Differentiation 2002;70(2–3):120–9.

  • 54.

    Leak RK, Zhang L, Stetler RA, Weng Z, Li P, et al. HSP27 protects the blood-brain barrier against ischemia-induced loss of integrity. CNS Neurol Disord Drug Targets 2013;12(3):325–37.

  • 55.

    Di Carlo A, White N, Guo F, Garrett P, Litovitz T. Chronic electromagnetic field exposure decreases HSP70 levels and lowers cytoprotection. J Cell Biochem 2002;84(3):447–54.

  • 56.

    Ohmori H, Kanayama N. Mechanisms leading to autoantibody production: link between inflammation and autoimmunity. Curr Drug Targets Inflamm Allergy 2003;2(3):232–41.

  • 57.

    Profumo E, Buttari B, Riganò R. Oxidative stress in cardiovascular inflammation: its involvement in autoimmune responses. Int J Inflam 2011;2011:295705.

  • 58.

    Lin H, Opler M, Head M, Blank M, Goodman R. Electromagnetic field exposure induces rapid, transitory heat shock factor activation in human cells. J Cell Biochem 1997;66(4):482–88.

  • 59.

    Tsurita G, Ueno S, Tsuno NH, Nagawa H, Muto T. Effects of exposure to repetitive pulsed magnetic stimulation on cell proliferation and expression of heat shock protein 70 in normal and malignant cells. Biochem Biophys Res Commun 1999;261(3):689–94.

  • 60.

    Bozic B, Cucnik S, Kveder T, Rozman B. Autoimmune reactions after electro-oxidation of IgG from healthy persons: relevance of electric current and antioxidants. Ann NY Acad Sci 2007;1109:158–66.

  • 61.

    Burch JB, Reif JS, Yost MG, Keefe TJ, Pitrat CA. Reduced excretion of a melatonin metabolite in workers exposed to 60 Hz magnetic fields. Am J Epidemiol 1999;150(1):27–36.

  • 62.

    Kovács J, Brodner W, Kirchlechner V, Arif T, Waldhauser F. Measurement of urinary melatonin: a useful tool for monitoring serum melatonin after its oral administration. J Clin Endocrinol Metab 2000;85(2):666–70.

  • 63.

    Schmidt R, Schmidt H, Curb JD, Masaki K, White LR, et al. Early inflammation and dementia: a 25-year follow-up of the Honolulu-Asia Aging Study. Ann Neurol 2002;52(2):168–74.

  • 64.

    Dik MG, Jonker C, Hack CE, Smit JH, Comijs HC, et al. Serum inflammatory proteins and cognitive decline in older persons. Neurology 2005;64(8):1371–7.

  • 65.

    Gazerani P, Pourpak Z, Ahmadiani A, Hemmati A, Kazemnejad A. A correlation between migraine, histamine and immunoglobulin E. Scand J Immunol 2003;57(3):286–90.

  • 66.

    Stamataki E, Stathopoulos A, Garini E, Kokkoris S, Glynos C, et al. Serum S100B protein is increased and correlates with interleukin 6, hypoperfusion indices, and outcome in patients admitted for surgical control of hemorrhage. Shock 2013;40(4):274–80.

  • 67.

    Donato R. S100: a multigenic family of calcium-modulated proteins of the EF-hand type with intracellular and extracellular functional roles. Int J Biochem Cell Biol 2001;33(7):637–68.

  • 68.

    Michetti F, Corvino V, Geloso MC, Lattanzi W, Bernardini C, et al. The S100B protein in biological fluids: more than a lifelong biomarker of brain distress. J Neurochem 2012;120(5):644–59.

  • 69.

    Sheng JG, Mrak RE, Griffin WS. Glial-neuronal interactions in Alzheimer disease: progressive association of IL-1alpha+ microglia and S100beta+ astrocytes with neurofibrillary tangle stages. J Neuropathol Exp Neurol 1997;56(3):285–90.

  • 70.

    Migheli A, Cordera S, Bendotti C, Atzori C, Piva R, et al. S-100beta protein is upregulated in astrocytes and motor neurons in the spinal cord of patients with amyotrophic lateral sclerosis. Neurosci Lett 1999;261(1–2):25–28.

  • 71.

    Söderqvist F, Carlberg M, Hardell L. Biomarkers in volunteers exposed to mobile phone radiation. Toxicol Lett 2015;235(2):140–6.

  • 72.

    Söderqvist F, Carlberg M, Hansson Mild K, Hardell L. Exposure to an 890-MHz mobile phone-like signal and serum levels of S100B and transthyretin in volunteers. Toxicol Lett 2009;189(1):63–6.

  • 73.

    Söderqvist F, Carlberg M, Hardell L. Use of wireless telephones and serum S100B levels: a descriptive cross-sectional study among healthy Swedish adults aged 18-65 years. Sci Total Environ 2009;407(2):798–805.

  • 74.

    Brzezinski A. Melatonin in humans. N Engl J Med 1997;336(3): 186–95.

  • 75.

    Baydas G, Ozer M, Yasar A, Koz ST, Tuzcu M. Melatonin prevents oxidative stress and inhibits reactive gliosis induced by hyperhomocysteinemia in rats. Biochemistry (Mosc) 2006;71 (Suppl 1):S91–5.

  • 76.

    Wada H, Inagaki N, Yamatodani A, Watanabe T. Is the histaminergic neuron system a regulatory center for whole-brain activity? Trends Neurosci 1991;14(9):415–8.

  • 77.

    Onodera K, Yamatodani A, Watanabe T, Wada H. Neuropharmacology of the histaminergic neuron system in the brain and its relationship with behavioral disorders. Prog Neurobiol 1994;42(6):685–702.

  • 78.

    Haas HL, Sergeeva OA, Selbach O. Histamine in the nervous system. Physiol Rev 2008;88(3):1183–241.

  • 79.

    Panula P, Nuutinen S. The histaminergic network in the brain: basic organization and role in disease. Nat Rev Neurosci 2013;14(7):472–87.

  • 80.

    Chen YY, Lv J, Xue XY, He GH, Zhou Y, et al. Effects of sympathetic histamine on vasomotor responses of blood vessels in rabbit ear to electrical stimulation. Neurosci Bull 2010;26(3):219–24.

  • 81.

    Murakami M, Yoshikawa T, Nakamura T, Ohba T, Matsuzaki Y, et al. Involvement of the histamine H1 receptor in the regulation of sympathetic nerve activity. Biochem Biophys Res Commun 2015;458(3):584–9.

  • 82.

    Havas M. Radiation from wireless technology affects the blood, the heart, and the autonomic nervous system. Rev Environ Health 2013;28(2–3):75–84.

  • 83.

    Adachi N. Cerebral ischemia and brain histamine. Brain Res Brain Res Rev 2005;50(2):275–86.

  • 84.

    Dale HH. On some physiological actions of ergot. J Physiol 1906;34(3):163–206.

  • 85.

    Sick E, Brehin S, André P, Coupin G, Landry Y, et al. Advanced glycation end products (AGEs) activate mast cells. Br J Pharmacol 2010;161(2):442–55.

  • 86.

    Donato R, Sorci G, Riuzzi F, Arcuri C, Bianchi R, et al. S100B’s double life: intracellular regulator and extracellular signal. Biochim Biophys Acta 2009;1793(6):1008–22.

  • 87.

    Goh SY, Cooper ME. Clinical review: the role of advanced glycation end products in progression and complications of diabetes. J Clin Endocrinol Metab 2008;93(4):1143–52.

  • 88.

    Padawer J. Quantitative studies with mast cells. Ann NY Acad Sci 1963;103:87–138.

  • 89.

    Marshall JS. Mast-cell responses to pathogens. Nat Rev Immunol 2004;4(10):787–99.

  • 90.

    Rinne JO, Anichtchik OV, Eriksson KS, Kaslin J, Tuomisto L, et al. Increased brain histamine levels in Parkinson’s disease but not in multiple system atrophy. J Neurochem 2002;81(5): 954–60.

  • 91.

    Dux E, Temesvári P, Joó F, Adám G, Clementi F, et al. The blood-brain barrier in hypoxia: ultrastructural aspects and adenylate cyclase activity of brain capillaries. Neuroscience 1984;12(3):951–8.

  • 92.

    Gotoh O, Asano T, Koide T, Takakura K. Ischemic brain edema following occlusion of the middle cerebral artery in the rat. I: the time courses of the brain water, sodium and potassium contents and blood-brain barrier permeability to 125I-albumin. Stroke 1985;16(1):101–9.

  • 93.

    Hardebo JE, Beley A. Influence of blood pressure on blood-brain barrier function in brain ischemia. Acta Neurol Scand 1984;70(5):356–9.

  • 94.

    Hatashita S, Hoff JT. Brain edema and cerebrovascular permeability during cerebral ischemia in rats. Stroke 1990;21(4):582–8.

  • 95.

    Vicente E, Degerone D, Bohn L, Scornavaca F, Pimentel A, et al. Astroglial and cognitive effects of chronic cerebral hypoperfusion in the rat. Brain Res 2009;1251:204–12.

  • 96.

    Liu H, Zhang J. Cerebral hypoperfusion and cognitive impairment: the pathogenic role of vascular oxidative stress. Int J Neurosci 2012;122(9):494–9.

  • 97.

    Davies AL, Desai RA, Bloomfield PS, McIntosh PR, Chapple KJ, et al. Neurological deficits caused by tissue hypoxia in neuroinflammatory disease. Ann Neurol 2013;74(6):815–25.

  • 98.

    Pache M, Kaiser HJ, Akhalbedashvili N, Lienert C, Dubler B, et al. Extraocular blood flow and endothelin-1 plasma levels in patients with multiple sclerosis. Eur Neurol 2003;49(3):164–8.

  • 99.

    De Ley G, Demeester G, Leusen L. Cerebral histamine in hypoxia. Arch Int Physiol Biochim 1984;94(4):33–5.

  • 100.

    Yu XX, Barger JL, Boyer BB, Brand MD, Pan G, et al. Impact of endotoxin on UCP homolog mRNA abundance, thermoregulation, and mitochondrial proton leak kinetics. Am J Physiol Endocrinol Metab 2000;279(2):E433–46.

  • 101.

    Astrup J. Energy-requiring cell functions in the ischemic brain. Their critical supply and possible inhibition in protective therapy. J Neurosurg 1982;56(4):482–97.

  • 102.

    Ribatti D. The crucial role of mast cells in blood-brain barrier alterations. Exp Cell Res 2015. pii: S0014-4827(15)00193-7.

  • 103.

    Lindsberg PJ, Strbian D, Karjalainen-Lindsberg ML. Mast cells as early responders in the regulation of acute blood-brain barrier changes after cerebral ischemia and hemorrhage. J Cereb Blood Flow Metab 2010;30(4):689–7.

  • 104.

    Nordal RA, Wong CS. Molecular targets in radiation-induced blood-brain barrier disruption. Int J Radiat Oncol Biol Phys 2005;62(1):279–87.

  • 105.

    Block ML, Zecca L, Hong JS. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci 2007;8(1):57–69.

  • 106.

    Frank-Cannon TC, Alto LT, McAlpine FE, Tansey MG. Does neuroinflammation fan the flame in neurodegenerative diseases? Mol Neurodegener 2009;4:47.

  • 107.

    O’Connor TM, O’Connell J, O’Brien DI, Goode T, Bredin CP, et al. The role of substance P in inflammatory disease. J Cell Physiol 2004;201(2):167–80.

  • 108.

    Raslan F, Schwarz T, Meuth SG, Austinat M, Bader M, et al. Inhibition of bradykinin receptor B1 protects mice from focal brain injury by reducing blood-brain barrier leakage and inflammation. J Cereb Blood Flow Metab 2010;30(8):1477–86.

  • 109.

    Zhu J, Qu C, Lu X, Zhang S. Activation of microglia by histamine and substance P. Cell Physiol Biochem 2014;34(3):768–80.

  • 110.

    Kettenmann H, Hanisch UK, Noda M, Verkhratsky A. Physiology of microglia. Physiol Rev 2011;91(2):461–553.

  • 111.

    Ammari M, Brillaud E, Gamez C, Lecomte A, Sakly M, et al. Effect of a chronic GSM 900 MHz exposure on glia in the rat brain. Biomed Pharmacother 2008;62(4):273–81.

  • 112.

    Hösli L, Hösli E, Schneider U, Wiget W. Evidence for the existence of histamine H1- and H2-receptors on astrocytes of cultured rat central nervous system. Neurosci Lett 1984;48(3):287–91.

  • 113.

    Dong Y, Benveniste EN. Immune function of astrocytes. Glia 2001;36(2):180–90.

  • 114.

    Majno G, Gilmore V, Leventhal M. On the mechanism of vascular leakage caused by histaminetype mediators. A microscopic study in vivo. Circ Res 1967;21(6):833–47.

  • 115.

    Mayhan WG. Regulation of blood-brain barrier permeability. Microcirculation 2001;8(2):89–104.

  • 116.

    Gurney KJ, Estrada EY, Rosenberg GA. Blood-brain barrier disruption by stromelysin-1 facilitates neutrophil infiltration in neuroinflammation. Neurobiol Dis 2006;23(1):87–96.

  • 117.

    Moretti R, Pansiot J, Bettati D, Strazielle N, Ghersi-Egea JF, et al. Blood-brain barrier dysfunction in disorders of the developing brain. Front Neurosci 2015;9:40.

  • 118.

    Kasparová S, Brezová V, Valko M, Horecký J, Mlynárik V, et al. Study of the oxidative stress in a rat model of chronic brain hypoperfusion. Neurochem Int 2005;46(8):601–11.

  • 119.

    Oscar KJ, Hawkins TD. Microwave alteration of the blood-brain barrier system of rats. Brain Res 1977;126(2):281–93.

  • 120.

    Oscar KJ, Gruenau SP, Folker MT, Rapoport SI. Local cerebral blood flow after microwave exposure. Brain Res 1981;204(1):220–5.

  • 121.

    Albert EN, Kerns JM. Reversible microwave effects on the blood-brain barrier. Brain Res 1981;230(1–2):153–64.

  • 122.

    Nittby H, Grafström G, Eberhardt JL, Malmgren L, Brun A, et al. Radiofrequency and extremely low-frequency electromagnetic field effects on the blood-brain barrier. Electromagn Biol Med 2008;27(2):103–26.

  • 123.

    Reiter RJ. Melatonin suppression by static and extremely low frequency electromagnetic fields: relationship to the reported increased incidence of cancer. Rev Environ Health 1994;10 (3–4):171–86.

  • 124.

    Burch JB, Reif JS, Yost MG, Keefe TJ, Pitrat CA. Nocturnal excretion of a urinary melatonin metabolite among electric utility workers. Scand J Work Environ Health 1998;24(3):183–9.

  • 125.

    Pfluger DH, Minder CE. Effects of exposure to 16.7 Hz magnetic fields on urinary 6-hydroxymelatonin sulfate excretion of Swiss railway workers. J Pineal Res 1996;21(2):91–100.

  • 126.

    Reiter RJ. Melatonin in the context of the reported bioeffects of environmental electromagnetic fields. Bioelectroch Bioener 1998;47:135–42.

  • 127.

    Reiter RJ, Pablos MI, Agapito TT, Guerrero JM. Melatonin in the context of the free radical theory of aging. Ann NY Acad Sci 1996;786:362–78.

  • 128.

    Reiter R, Tang L, Garcia JJ, Muñoz-Hoyos A. Pharmacological actions of melatonin in oxygen radical pathophysiology. Life Sci 1997;60(25):2255–71.

  • 129.

    The Bioinitiative report 2012. A Rationale for Biologically-based Public Exposure Standards for Electromagnetic Fields (ELF and RF). Available at:

  • 130.

    Girgert R, Hanf V, Emons G, Gründker C. Signal transduction of the melatonin receptor MT1 is disrupted in breast cancer cells by electromagnetic fields. Bioelectromagnetics 2010;31(3):237–45.

  • 131.

    Hendrick JP, Hartl FU. The role of molecular chaperones in protein folding. FASEB J 1995;9(15):1559–69.

  • 132.

    Banecka-Majkutewicz Z, Grabowski M, Kadziński L, Papkov A, Węgrzyn A, et al. Increased levels of antibodies against heat shock proteins in stroke patients. Acta Biochim Pol 2014;61(2):379–83.

  • 133.

    Tanaka S, Ichikawa A. Recent advances in molecular pharmacology of the histamine systems: immune regulatory roles of histamine produced by leukocytes. J Pharmacol Sci 2006;101(1):19–23.

  • 134.

    Johansson O. Disturbance of the immune system by electromagnetic fields-A potentially underlying cause for cellular damage and tissue repair reduction which could lead to disease and impairment. Pathophysiology 2009;16(2–3):157–77.

  • 135.

    Gangi S, Johansson O. A theoretical model based upon mast cells and histamine to explain the recently proclaimed sensitivity to electric and/or magnetic fields in humans. Med Hypotheses 2000;54(4):663–71.

  • 136.

    Pall ML. Post-radiation syndrome as a NO/ONOO- cycle, chronic fatigue syndrome-like disease. Med Hypotheses 2008;71(4):537–41.

  • 137.

    Levallois P. Hypersensitivity of human subjects to environmental electric and magnetic field exposure: a review of the literature. Environ Health Perspect 2002;110(Suppl 4):613–8.

  • 138.

    Theoharides TC, Donelan J, Kandere-Grzybowska K, Konstantinidou A. The role of mast cells in migraine pathophysiology. Brain Res Brain Res Rev 2005;49(1):65–76.

  • 139.

    Ozturk A, Degirmenci Y, Tokmak B, Tokmak A. Frequency of migraine in patients with allergic rhinitis. Pak J Med Sci 2013;29(2):528–31.

  • 140.

    Alstadhaug KB. Histamine in migraine and brain. Headache 2014;54(2):246–59.

  • 141.

    Renkawek K, Bosman GJ, de Jong WW. Expression of small heat-shock protein hsp 27 in reactive gliosis in Alzheimer disease and other types of dementia. Acta Neuropathol 1994;87(5):511–9.

  • 142.

    Renkawek K, Stege GJ, Bosman GJ. Dementia, gliosis and expression of the small heat shock proteins hsp27 and alpha B-crystallin in Parkinson’s disease. Neuroreport 1999;10(11):2273–6.

  • 143.

    Donato R. Intracellular and extracellular roles of S100 proteins. Microsc Res Tech 2003;60(6):540–51.

  • 144.

    Andreazza AC, Cassini C, Rosa AR, Leite MC, de Almeida LM, et al. Serum S100B and antioxidant enzymes in bipolar patients. J Psychiatr Res 2007;41(6):523–9.

  • 145.

    Donato R, Cannon BR, Sorci G, Riuzzi F, Hsu K, et al. Functions of S100 proteins. Curr Mol Med 2013;13(1):24–57.

  • 146.

    Mu H, Wang X, Lin P, Yao Q, Chen C. Nitrotyrosine promotes human aortic smooth muscle cell migration through oxidative stress and ERK1/2 activation. Biochim Biophys Acta 2008;1783(9):1576–84.

  • 147.

    Kimata H. Effect of exposure to volatile organic compounds on plasma levels of neuropeptides, nerve growth factor and histamine in patients with self-reported multiple chemical sensitivity. Int J Hyg Environ Health 2004;207(2):159–63.

  • 148.

    Irigaray P, Belpomme D. Basic properties and molecular mechanisms of exogenous chemical carcinogens. Carcinogenesis 2010;31(2):135–48.

  • 149.

    McKeown-Eyssen G, Baines C, Cole DE, Riley N, Tyndale RF, et al. Case-control study of genotypes in multiple chemical sensitivity: CYP2D6, NAT1, NAT2, PON1, PON2 and MTHFR. Int J Epidemiol 2004;33(5):971–8.

  • 150.

    Schnakenberg E, Fabig KR, Stanulla M, Strobl N, Lustig M, et al. A cross-sectional study of self-reported chemical-related sensitivity is associated with gene variants of drug-metabolizing enzymes. Environ Health 2007;6:6.

  • 151.

    Caccamo D, Cesareo E, Mariani S, Raskovic D, Ientile R, et al. Xenobiotic sensor- and metabolism-related gene variants in environmental sensitivity-related illnesses: a survey on the Italian population. Oxid Med Cell Longev 2013;2013:831969.

  • 152.

    Berg ND, Rasmussen HB, Linneberg A, Brasch-Andersen C, Fenger M, et al. Genetic susceptibility factors for multiple chemical sensitivity revisited. Int J Hyg Environ Health 2010;213(2):131–9.

  • 153.

    De Luca C, Scordo MG, Cesareo E, Pastore S, Mariani S, et al. Biological definition of multiple chemical sensitivity from redox state and cytokine profiling and not from polymorphisms of xenobiotic-metabolizing enzymes. Toxicol Appl Pharmacol 2010;248(3):285–92.

  • 154.

    Kirschvink JL, Kobayashi-Kirschvink A, Woodford BJ. Magnetite biomineralization in the human brain. Proc Natl Acad Sci USA 1992;89(16):7683–7.

  • 155.

    Kirschvink JL, Walker MM, Diebel CE. Magnetite-based magnetoreception. Curr Opin Neurobiol 2001;11(4):462–7.

  • 156.

    Kirschvink JL. Microwave absorption by magnetite: a possible mechanism for coupling nonthermal levels of radiation to biological systems. Bioelectromagnetics 1996;17(3):187–94.

  • 157.

    De Luca C, Scordo G, Cesareo E, Raskovic D, Genovesi G, et al. Idiopathic environmental intolerances (IEI): from molecular epidemiology to molecular medicine. Indian J Exp Biol 2010;48(7):625–35.

  • 158.

    Costa A, Branca V, Minoia C, Pigatto PD, Guzzi G. Heavy metals exposure and electromagnetic hypersensitivity. Sci Total Environ 2010;408(20):4919–20.

  • 159.

    Burns-Naas LA, Meade BJ, Munson AE. Toxic responses of the immune system. In: Klaassen CD, editor. Casarett and Doull’s toxicology: the basic of poisons, 6th ed. New York: McGraw Hill, 2001:419–70.

  • 160.

    Gardner RM, Nyland JF, Evans SL, Wang SB, Doyle KM, et al. Mercury induces an unopposed inflammatory response in human peripheral blood mononuclear cells in vitro. Environ Health Perspect 2009;117(12):1932–8.

  • 161.

    Goyer RA, Clarkson TW. Toxic effects of metals. In: Klaassen CD, editor. Casarett and Doull’s toxicology: the basic of poisons, 6th ed. New York: McGraw Hill, 2001:822–6.

  • 162.

    Minoia C, Ronchi A, Pigatto PD, Guzzi G. Blood lead, cadmium, and mercury concentrations in the Korean population. Environ Res 2010;110(5):532.

  • 163.

    Mortazavi SM, Daiee E, Yazdi A, Khiabani K, Kavousi A, et al. Mercury release from dental amalgam restorations after magnetic resonance imaging and following mobile phone use. Pak J Biol Sci 2008;11(8):1142–6.

  • 164.

    Störtebecker P. Mercury poisoning from dental amalgam through a direct nose-brain transport. Lancet 1989;1(8648):1207.

  • 165.

    Miller CS. Toxicant-induced loss of tolerance – an emerging theory of disease? Environ Health Perspect 1997;105(Suppl 2): 445–53.

  • 166.

    Rubin LL, Staddon JM. The cell biology of the blood-brain barrier. Annu Rev Neurosci 1999;22:11–28.

  • 167.

    Löscher W, Potschka H. Role of drug efflux transporters in the brain for drug disposition and treatment of brain diseases. Prog Neurobiol 2005;76(1):22–76.

  • 168.

    Meairs S, Alonso A. Ultrasound, microbubbles and the blood-brain barrier. Prog Biophys Mol Biol 2007;93(1–3): 354–62.

  • 169.

    Smith MW, Gumbleton M. Endocytosis at the blood-brain barrier: from basic understanding to drug delivery strategies. J Drug Target 2006;14(4):191–214.

  • 170.

    Stam R. Electromagnetic fields and the blood-brain barrier. Brain Res Rev 2010;65(1):80–97.

  • 171.

    Mrak RE, Griffin WS. Glia and their cytokines in progression of neurodegeneration. Neurobiol Aging 2005;26(3):349–54.

  • 172.

    Griffin WS. Inflammation and neurodegenerative diseases. Am J Clin Nutr 2006;83(2):470S–4S.

  • 173.

    Erickson MA, Banks WA. Blood-brain barrier dysfunction as a cause and consequence of Alzheimer’s disease. J Cereb Blood Flow Metab 2013;33(10):1500–13.

  • 174.

    Bell RD, Zlokovic BV. Neurovascular mechanisms and blood-brain barrier disorder in Alzheimer’s disease. Acta Neuropathol 2009;118(1):103–13.

  • 175.

    Akiyama H, Barger S, Barnum S, Bradt B, Bauer J, et al. Inflammation and Alzheimer’s disease. Neurobiol Aging 2000;21(3):383–421.

  • 176.

    Sastre M, Klockgether T, Heneka MT. Contribution of inflammatory processes to Alzheimer’s disease: molecular mechanisms. Int J Dev Neurosci 2006;24(2–3):167–76.

  • 177.

    Ionov ID. Self-amplification of nigral degeneration in Parkinson’s disease: a hypothesis. Int J Neurosci 2008;118(12):1763–80.

  • 178.

    Jadidi-Niaragh F, Mirshafiey A. Histamine and histamine receptors in pathogenesis and treatment of multiple sclerosis. Neuropharmacology 2010;59(3):180–9.

  • 179.

    Anderson G, Berk M, Dodd S, Bechter K, Altamura AC, et al. Immuno-inflammatory, oxidative and nitrosative stress, and neuroprogressive pathways in the etiology, course and treatment of schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2013;42:1–4.

  • 180.

    Ng F, Berk M, Dean O, Bush AI. Oxidative stress in psychiatric disorders: evidence base and therapeutic implications. Int J Neuropsychopharmacol 2008;11(6):851–76.

  • 181.

    Patel JP, Frey BN. Disruption in the blood-brain barrier: the missing link between brain and body inflammation in bipolar disorder? Neural Plast 2015;2015:708306.

  • 182.

    Berk M, Kapczinski F, Andreazza AC, Dean OM, Giorlando F, et al. Pathways underlying neuroprogression in bipolar disorder: focus on inflammation, oxidative stress and neurotrophic factors. Neurosci Biobehav Rev 2011;35(3):804–17.

  • 183.

    Merritt JH, Chamness AF, Allen SJ. Studies on blood-brain barrier permeability after microwave-radiation. Radiat Environ Biophys 1978;15(4):367–77.

  • 184.

    Avsenik J, Bisdas S, Popovic KS. Blood-brain barrier permeability imaging using perfusion computed tomography. Radiol Oncol 2015;49(2):107–14.

  • 185.

    Uttara B, Singh AV, Zamboni P, Mahajan RT. Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr Neuropharmacol 2009;7(1):65–74.

  • 186.

    Galasko D, Montine TJ. Biomarkers of oxidative damage and inflammation in Alzheimer’s disease. Biomark Med 2010;4(1):27–36.

  • 187.

    Heneka MT, O’Banion MK. Inflammatory processes in Alzheimer’s disease. J Neuroimmunol 2007;184(1–2):69–91.

  • 188.

    Tachibana H, Meyer JS, Kitagawa Y, Tanahashi N, Kandula P, et al. Xenon contrast CT-CBF measurements in parkinsonism and normal aging. J Am Geriatr Soc 1985;33(6):413–21.

  • 189.

    Abe Y, Kachi T, Kato T, Arahata Y, Yamada T, et al. Occipital hypoperfusion in Parkinson’s disease without dementia: correlation to impaired cortical visual processing. J Neurol Neurosurg Psychiatry 2003;74(4):419–22.

  • 190.

    Kikuchi A, Takeda A, Kimpara T, Nakagawa M, Kawashima R, et al. Hypoperfusion in the supplementary motor area, dorsolateral prefrontal cortex and insular cortex in Parkinson’s disease. J Neurol Sci 2001;193(1):29–36.

  • 191.

    Kasama S, Tachibana H, Kawabata K, Yoshikawa H. Cerebral blood flow in Parkinson’s disease, dementia with Lewy bodies, and Alzheimer’s disease according to three-dimensional stereotactic surface projection imaging. Dement Geriatr Cogn Disord 2005;19(5–6):266–75.

  • 192.

    Derejko M, Slawek J, Wieczorek D, Brockhuis B, Dubaniewicz M, et al. Regional cerebral blood flow in Parkinson’s disease as an indicator of cognitive impairment. Nucl Med Commun 2006;27(12): 945–51.

  • 193.

    Sobel E, Davanipour Z, Sulkava R, Erkinjuntti T, Wikstrom J, et al. Occupations with exposure to electromagnetic fields: a possible risk factor for Alzheimer’s disease. Am J Epidemiol 1995:142(5):515–24.

  • 194.

    Sobel E, Dunn M, Davanipour Z, Qian Z, Chui HC. Elevated risk of Alzheimer’s disease among workers with likely electromagnetic field exposure. Neurol 1996;47(6):1477–81.

  • 195.

    Qiu C, Fratiglioni L, Karp A, Winblad B, Bellander T. Occupational exposure to electromagnetic fields and risk of Alzheimer’s disease. Epidemiol 2004;15(6): 687–94.

  • 196.

    Davanipour Z, Sobel E. Long-term exposure to magnetic fields and the risks of Alzheimer’s disease and breast cancer: further biological research. Pathophysiol 2009;16(2–3):149–56.

  • 197.

    Garcia AM, Sisternas A, Hoyos SP. Occupational exposure to extremely low frequency electric and magnetic fields and Alzheimer disease: a meta-analysis. Int J Epidemiol 2008:37(2):329–40.

  • 198.

    Arendash GW, Sanchez-Ramos J, Mori T, Mamcarz M, Lin X, et al. Electromagnetic field treatment protects against and reverses cognitive impairment in Alzheimer’s disease mice. J Alzheimers Dis 2010;19(1):191–210.

  • 199.

    Söderqvist F, Hardell L, Carlberg M, Mild KH. Radiofrequency fields, transthyretin, and Alzheimer’s disease. J Alzheimers Dis 2010;20(2):599–606.

  • 200.

    Purdey M. Elevated levels of ferrimagnetic metals in foodchains supporting the Guam cluster of neurodegeneration: do metal nucleated crystal contaminants [corrected] evoke magnetic fields that initiate the progressive pathogenesis of neurodegeneration? Med Hypotheses 2004;63(5):793–809.

  • 201.

    Hallberg O, Oberfeld G. Letter to the editor: will we all become electrosensitive? Electromagn Biol Med 2006;25(3):189–91.

  • 202.

    World Health Organisation. Electromagnetic fields (300 Hz– 300 GHz) 1993. Available at:

  • 203.

    Gibson PR, Kovach S, Lupfer A. Unmet health care needs for persons with environmental sensitivity. J Multidisc Healthcare 2015;8:59–66.

Purchase article
Get instant unlimited access to the article.
Log in
Already have access? Please log in.

Journal + Issues

Reviews on Environmental Health is an international quarterly periodical that fills the need for rapid publication of specialized comprehensive review articles on hot topics in the field of environmental health. The journal is an inspiring forum for scientists, environmentalists, physicians, engineers and students active in the area of public health, including quality of life.