Environmental PAH exposure and male idiopathic infertility: a review on early life exposures and adult diagnosis

Erin P. Madeen 1 , 2  and David E. Williams 2 , 3 , 4
  • 1 Johns Hopkins University, School of Medicine, Division of Clinical Pharmacology, 725 N. Wolfe Street, Baltimore, MD 21205, USA
  • 2 Superfund Research Program, Oregon State University, Agriculture and Life Sciences Bldg, Corvallis, OR 97330, USA
  • 3 Department of Environmental and Molecular Toxicology, Agriculture and Life Sciences Bldg, Oregon State University, Corvallis, OR 97330, USA
  • 4 Linus Pauling Institute, Linus Pauling Science Center, Oregon State University, Corvallis, OR 97330, USA
Erin P. Madeen and David E. Williams


The male reproductive system is acutely and uniquely sensitive to a variety of toxicities, including those induced by environmental pollutants throughout the lifespan. Early life hormonal and morphological development results in several especially sensitive critical windows of toxicity risk associated with lifelong decreased reproductive health and fitness. Male factor infertility can account for over 40% of infertility in couples seeking treatment, and 44% of infertile men are diagnosed with idiopathic male infertility. Human environmental exposures are poorly understood due to limited available data. The latency between maternal and in utero exposure and a diagnosis in adulthood complicates the correlation between environmental exposures and infertility. The results from this review include recommendations for more and region specific monitoring of polycyclic aromatic hydrocarbon (PAH) exposure, longitudinal and clinical cohort considerations of exposure normalization, gene-environment interactions, in utero exposure studies, and controlled mechanistic animal experiments. Additionally, it is recommended that detailed semen analysis and male fertility data be included as endpoints in environmental exposure cohort studies due to the sensitivity of the male reproductive system to environmental pollutants, including PAHs.

  • 1.

    Martinez G, Daniels K, Chandra A. Fertility of men and women aged 15–44 years in the United States: National Survey of Family Growth, 2006–2010. Natl Health Stat Report 2012;51:1–28.

  • 2.

    Barker DJ. Fetal origins of coronary heart disease. Br Med J 1995;311(6998):171–4.

  • 3.

    De Boo HA, Harding JE. The developmental origins of adult disease (Barker) hypothesis. Aust NZ J Obstet Gyn 2006;46(1):4–14.

  • 4.

    IARC, Monographs on the Evaluation of Carcinogenic Risks to Humans, in Polynuclear aromatic compounds, Part 1: chemical, environmental, and experimental data. 1983, World Health Organization International Agency For Research On Cancer: Lyon, France.

  • 5.

    Menzie CA, Potocki BB, Santodonato J. Exposure to carcinogenic PAHs in the environment. Environ Sci Technol 1992;26(7):1278–84.

  • 6.

    Zhang YY, Dong S, Wang H, Tao S, Kiyama R. Biological impact of environmental polycyclic aromatic hydrocarbons (ePAHs) as endocrine disruptors. Environ Pollut 2016;213:809–24.

  • 7.

    Peterson BS, Rauh VA, Bansal R, Hao X, Toth Z, et al. Effects of prenatal exposure to air pollutants (polycyclic aromatic hydrocarbons) on the development of brain white matter, cognition, and behavior in later childhood. JAMA Psychiatry 2015;72(6):531–40.

  • 8.

    Nakamura BN, Mohar I, Lawson GW, Cortés MM, Hoang YD, et al. Increased sensitivity to testicular toxicity of transplacental benzo [a] pyrene exposure in male glutamate cysteine ligase modifier subunit knockout (Gclm-/-) mice. Toxicol Sci 2012;126(1):227–41.

  • 9.

    Gaspari L, Chang SS, Santella RM, Garte S, Pedotti P, et al. Polycyclic aromatic hydrocarbon-DNA adducts in human sperm as a marker of DNA damage and infertility. Mutat Res 2003;535(2):155–60.

  • 10.

    Jungwirth A, Diemer T, Dohle GR, Giwercman A, Kopa Z, et al. Guidelines on male infertility. Euro Assoc Urol 2015. Available at: http://uroweb.org/wp-content/uploads/17-Male-Infertility_LR1.pdf.

  • 11.

    Pierik FH, Van Ginneken AM, Dohle GR, Vreeburg JT, Weber RF. The advantages of standardized evaluation of male infertility. Int J Androl 2000;23(6):340–6.

  • 12.

    Nuti F, Krausz C. Gene polymorphisms/mutations relevant to abnormal spermatogenesis. Reprod Biomed Online 2008;16(4):504–13.

  • 13.

    Krausz C, Giachini C. Genetic risk factors in male infertility. Arch Androl 2007;53(3):125–33.

  • 14.

    Tuttelmann F, Rajpert-De Meyts E, Nieschlag E, Simoni M. Gene polymorphisms and male infertility – a meta-analysis and literature review. Reprod Biomed Online 2007;15(6):643–58.

  • 15.

    Jeng HA, Pan C-H, Chao M-R, Lin W-Y. Sperm DNA oxidative damage and DNA adducts. Mutat Res 2015;794:75–82.

  • 16.

    Jeng HA, Pan CH, Lin WY, Wu MT, Taylor S, et al. Biomonitoring of polycyclic aromatic hydrocarbons from coke oven emissions and reproductive toxicity in nonsmoking workers. J Hazard Mater 2013;244:436–43.

  • 17.

    Anderson L, Anderson LM, Coulson M, McIntyre BS, Boekelheide K, et al. Sperm MRNAs are molecular markers of minimal testicular injury in rats. Andrology 2013;1:85–5.

  • 18.

    Ji GX, Yan L, Wu S, Liu J, Wang L, et al. Bulky DNA adducts in human sperm associated with semen parameters and sperm DNA fragmentation in infertile men: a cross-sectional study. Environ Health 2013;12:82.

  • 19.

    Cooke PS, Young P, Cunha GR. Androgen receptor expression in developing male reproductive-organs. Endocrinology 1991;128(6):2867–73.

  • 20.

    Reisert I, Pilgrim C. Sexual-differentiation of monanimergic neurons – genetic or epigenetic. Trends Neurosci 1991;14(10):468–73.

  • 21.

    Takeda H, Chang C. Immunoistochemical and insitu hybridizatin analysis of androgen receptor expression during the development of the mouse prostate gland. J Endocrinol 1991;129(1):83–9.

  • 22.

    Murashima A, Kishigami S, Thomson A, Yamada G. Androgens and mammalian male reproductive tract development. Biochim Biophys Acta 2015;1849(2):163–70.

  • 23.

    De Bellis MD, Keshavan MS, Beers SR, Hall J, Frustaci K, et al. Sex differences in brain maturation during childhood and adolescence. Cereb Cortex 2001;11(6):552–7.

  • 24.

    Hutchison JB. Gender-specific steroid metabolism in neural differentiation. Cell Mol Neurobiol 1997;17(6):603–26.

  • 25.

    Goldstein JM, Seidman LJ, Horton NJ, Makris N, Kennedy DN, et al. Normal sexual dimorphism of the adult human brain assessed by in vivo magnetic resonance imaging. Cereb Cortex 2001;11(6):490–7.

  • 26.

    Segovia S, Guillamón A, del Cerro MC, Ortega E, Pérez-Laso C, et al. The development of brain sex differences: a multisignaling process. Behav Brain Res 1999;105(1):69–80.

  • 27.

    Arnold AP, Gorski RA. Gonadal steroid induction of structural sex – differences in the central nervous system. Annu Rev Neurosci 1984;7:413–42.

  • 28.

    Pilgrim C, Reisert I. Differences between male and female brains – developmental mechanisms and implications. Horm Metab Res 1992;24(8):353–9.

  • 29.

    Roselli CE, Abdelgadir SE, Resko JA. Regulation of aromatase gene expression in the adult rat brain. Brain Res Bull 1997;44(4):351–7.

  • 30.

    BeyerC, Pilgrim C, Reisert I. Dopamine content and metabolism in mesencephalic and diencephalic cell cultures – sex differences and effects on sex steriods. J Neurosci 1991;11(5):1325–33.

  • 31.

    Phoenix CH, Goy RW, Gerall AA, Young WC. Organizing action of prenatally administered testosterone propionate on the tissues mediating mating behavior in the female guinea pig. Endocrinology 1959;65(3):369–82.

  • 32.

    Dewing P, Shi T, Horvath S, Vilain E. Sexually dimorphic gene expression in mouse brain precedes gonadal differentiation. Mol Brain Res 2003;118(1–2):82–90.

  • 33.

    Rodier PM. Developing brain as a target of toxicity. Environ Health Perspect 1995;103:73–6.

  • 34.

    Grova N, Salquèbre G, Schroeder H, Appenzeller BM. Determination of PAHs and OH-PAHs in rat brain by gas chromatography tandem (triple quadrupole) mass spectrometry. Chem Res Toxicol 2011;24(10):1653–67.

  • 35.

    Brown LA, Khousbouei H, Goodwin JS, Irvin-Wilson CV, Ramesh A, et al. Down-regulation of early ionotrophic glutamate receptor subunit developmental expression as a mechanism for observed plasticity deficits following gestational exposure to benzo(a)pyrene. Neurotoxicology 2007;28(5):965–78.

  • 36.

    Perera FP, Jedrychowski W, Butscher M, Camann D, Kieltyka A, et al. Prenatal airborne polycyclic aromatic hydrocarbon exposure and child IQ at age 5 years. Pediatrics 2009;124(2):E195–202.

  • 37.

    Jedrychowski WA, Perera FP, Camann D, Spengler J, Butscher M, et al. Prenatal exposure to polycyclic aromatic hydrocarbons and cognitive dysfunction in children. Environ Sci Pollut Res 2015;22(5):3631–9.

  • 38.

    Lombardo MV, Ashwin E, Auyeung B, Chakrabarti B, Taylor K, et al. Fetal testosterone influences sexually dimorphic gray matter in the human brain. J Neurosci 2012;32(2):674–80.

  • 39.

    Lin PP, Chang JT, Ko JL, Liao SH, Lo WS. Reduction of androgen receptor expression by benzo a pyrene and 7,8-dihydro-9,10-epoxy-7,8,9,10-tetrahydrobenzo a pyrene in human lung cells. Biochem Pharmacol 2004;67(8):1523–30.

  • 40.

    Li F, Wu H, Li L, Li X, Zhao J, et al. Docking and QSAR study on the binding interactions between polycyclic aromatic hydrocarbons and estrogen receptor. Ecotox Environ Safe 2012;80:273–9.

  • 41.

    Srivastava VK, Li L, Li X, Zhao J, Peijnenburg WJGM. Fetal translocation and metabolism of PAH obtained from cola fly-ash given intratracheally to pregnant rats. J Toxicol Environ Health 1986;18(3):459–69.

  • 42.

    Hatch MC, Warburton D, Santella RM. Polycyclic aromatic hydrocarbons-DNA adducts in spontaneously aborted fetal tissue. Carcinogenesis 1990;11(9):1673–5.

  • 43.

    Sinko I, Sinkó I, Mórocz M, Zádori J, Kokavszky K. Effect of cigarette smoking on DNA damage of human cumulus cells analyzed by comet assay. Reprod Toxicol 2005;20(1):65–71.

  • 44.

    Georgellis A, Toppari J, Veromaa T, Rydström J, Parvinen M. Inhibition of meitoic divisions of rat spermatocytes in vitro by polycyclic aromatic hydrocarbons. Mutat Res 1990;231(2):125–35.

  • 45.

    Pedersen RA, Meneses J, Spindle A, Wu K, Galloway SM. Cytochrome P450 metabolic activity in embryonic and extraembryonic tissue liearges of mouse embryos. Proc Natl Acad Sci USA 1985;82(10):3311–5.

  • 46.

    Jensen TK, Jørgensen N, Punab M, Haugen TB, Suominen J, et al. Association of in utero exposure to maternal smoking with reduced semen quality and testis size in adulthood: a cross-sectional study of 1,770 young men from the general population in five European countries. Am J Epidemiol 2004;159(1):49–58.

  • 47.

    Storgaard L, Bonde JP, Ernst E, Spanô M, Andersen CY, et al. Does smoking during pregnancy affect sons’ sperm counts? Epidemiology 2003;14(3):278–86.

  • 48.

    Fukuda M, Fukuda K, Shimizu T, Andersen CY, Byskov AG. Periconceptual parental smoking and sex ratio of offspring – Reply. Lancet 2002;360(9344):1515–6.

  • 49.

    Viloria T, Rubio MC, Rodrigo L, Calderon G, Mercader A, et al. Smoking habits of parents and male: female ratio in spermatozoa and preimplantation embryos. Hum Reprod 2005;20(9):2517–22.

  • 50.

    Mackenzie KM, Angevine DM. Infertility in mice exposed in utero to benzo[a]pyene. Biol Reprod 1981;24(1):183–91.

  • 51.

    Mohamed ES, Song WH, Oh SA, Park YJ, You YA, et al. The transgenerational impact of benzo(a)pyrene on murine male fertility. Hum Reprod 2010;25(10):2427–33.

  • 52.

    Kim A, Park M, Yoon TK, Lee WS, Ko JJ, et al. Maternal exposure to benzo b fluoranthene disturbs reproductive performance in male offspring mice. Toxicol Lett 2011;203(1):54–61.

  • 53.

    Shorey LE, Castro DJ, Baird WM, Siddens LK, Löhr CV, et al. Transplacental carcinogenesis with dibenzo def,p chrysene (DBC): timing of maternal exposures determines target tissue response in offspring. Cancer Lett 2012;317(1):49–55.

  • 54.

    Jedrychowski WA, Perera FP, Tang D, Rauh V, Majewska R, et al. The relationship between prenatal exposure to airborne polycyclic aromatic hydrocarbons (PAHs) and PAH-DNA adducts in cord blood. J Expo Sci Environ Epidemiol 2013;23(4):371–7.

  • 55.

    Vishnevetsky J, Tang D, Chang HW, Roen EL, Wang Y, et al. Combined effects of prenatal polycyclic aromatic hydrocarbons and material hardship on child IQ. Neurotoxicol Teratol 2015;49:74–80.

  • 56.

    Perera FP, Rauh V, Tsai WY, Kinney P, Camann D, et al. Effects of transplacental exposure to environmental pollutants on birth outcomes in a multiethnic population. Environ Health Perspect 2003;111(2):201–5.

  • 57.

    Dennis MJ, Massey RC, Cripps G, Venn I, Howarth N, et al. Factors affecting the polycyclic aromatic hydrocarbon content of cereals, fats and other food-products. Food Addit Contam 1991;8(4):517–30.

  • 58.

    Jakszyn P, Agudo A, Ibáñez R, García-Closas R, Pera G, et al. Development of a food database of nitrosamines, heterocyclic amines, and polycyclic aromatic hydrocarbons. J Nutr 2004;134(8)2011–4.

  • 59.

    Domingo JL, Nadal M. Human dietary exposure to polycyclic aromatic hydrocarbons: a review of the scientific literature. Food Chem Toxicol 2015;86:144–53.

  • 60.

    Kazerouni N, Sinha R, Hsu CH, Greenberg A, Rothman N. Analysis of 200 food items for benzo a pyrene and estimation of its intake in an epidemiologic study. Food Chem Toxicol 2001;39(5):423–36.

  • 61.

    Boehmer TK, Foster SL, Henry JR, Woghiren-Akinnifesi EL, Yip FY. Residential proximity to major highways – United States, 2010. Morb Mortal Wkly Rep 2013;62(3):46–50.

  • 62.

    Gustafson P, Ostman C, Sallsten G. Indoor levels of polycyclic aromatic hydrocarbons in homes with or without wood burning for heating. Environ Sci Technol 2008;42(14):5074–80.

  • 63.

    Raiyani CV, Shah SH, Desai NM, Venkaiah K, Patel JS, et al. Characterization and problems of indoor pollution due to cooking stove smoke. Atmos Environ 1993;27(11):1643–55.

  • 64.

    Ezzati M, Kammen DM. The health impacts of exposure to indoor air pollution from solid fuels in developing countries: knowledge, gaps, and data needs. Environ Health Perspec 2002;110(11):1057–68.

  • 65.

    Huang L, Bohac SV, Chernyak SM, Batterman SA. Composition and integrity of PAHs, nitro-PAHs, hopanes, and steranes in diesel exhaust particulate matter. Water Air Soil Poll 2013;224(8):1630–1.

  • 66.

    Lafontaine S, Schrlau J, Butler J, Jia Y, Harper B, et al. Relative influence of trans-Pacific and regional atmospheric transport of PAHs in the Pacific Northwest, US. Environ Sci Technol 2015;49(23):13807–16.

  • 67.

    Lundstedt S, White PA, Lemieux CL, Lynes KD, Lambert IB, et al. Sources, fate, and toxic hazards of oxygenated polycyclic aromatic hydrocarbons (PAHs) at PAH-contaminated sites. Ambio 2007;36(6):475–85.

  • 68.

    Heeb NV, Schmid P, Kohler M, Gujer E, Zennegg M, et al. Secondary effects of catalytic diesel particulate filters: conversion of PAHs versus formation of nitro-PAHs. Environ Sci Technol 2008;42(10):3773–9.

  • 69.

    Sienra MD. Oxygenated polycyclic aromatic hydrocarbons in urban air particulate matter. Atmos Environ 2006;40(13):2374–84.

  • 70.

    Sram RJ, Benes I, Binková B, Dejmek J, Horstman D, et al. Teplice program – The impact of air pollution on human health. Environ Health Perspect 1996;104:699–714.

  • 71.

    Lewtas J. Air pollution combustion emissions: characterization of causative agents and mechanisms associated with cancer, reproductive, and cardiovascular effects. Mutat Res 2007;636(1–3):95–133.

  • 72.

    Sram RJ, Binková B, Rössner P, Rubes J, Topinka J, et al. Adverse reproductive outcomes from exposure to environmental mutagens. Mutat Res 1999;428(1–2):203–15.

  • 73.

    Dejmek J, Solanský I, Benes I, Lenícek J, Srám RJ. The impact of polycyclic aromatic hydrocarbons and fine particles on pregnancy outcome. Environ Health Perspect 2000;108(12):1159–64.

  • 74.

    Sram RJ. Impact of air pollution on reproductive health. Environ Health Perspect 1999;107(11):A542–3.

  • 75.

    Agarwal A, Mulgund A, Hamada A, Chyatte MR. A unique view on male infertility around the globe. Reprod Biol Endocrinol 2015;13:37.

  • 76.

    Bablok L, Dziadecki W, Szymusik I, Wolczynski S, Kurzawa R, et al. Patterns of infertility in Poland – multicenter study. Neuroendocrinol Lett 2011;32(6):799–804.

  • 77.

    Sanocka D, Kurpisz M. Infertility in Poland-present status, reasons, and prognosis as a reflection of Central and Eastern Europe problems with reproduction. Med Sci Monit 2003;9:16–20.

  • 78.

    Shimada T. Xenobiotic-metabolizing enzymes involved in activation and detoxification of carcinogenic polycyclic aromatic hydrocarbons. Drug Metab Pharmacokinet 2006;21(4):257–76.

  • 79.

    Shahid A, Ali R, Ali N, Hasan SK, Bernwal P, et al. Modulatory effects of catechin hydrate against genotoxicity, oxidative stress, inflammation and apoptosis induced by benzo(a)pyrene in mice. Food Chem Toxicol 2016;92:64–74.

  • 80.

    Rushmore TH, Kong AN. Pharmacogenomics, regulation and signaling pathways of phase I and II drug metabolizing enzymes. Curr Drug Metab 2002;3(5):481–90.

  • 81.

    Salehi Z, Gholizadeh L, Vaziri H, Madani AH. Analysis of GSTM1, GSTT1, and CYP1A1 in idiopathic male infertility. Reprod Sci 2012;19(1):81–5.

  • 82.

    Lu NX, Wu B, Xia Y, Wang W, Gu A, et al. Polymorphisms in CYP1A1 gene are associated with male infertility in a Chinese population. Int J Androl 2008;31(5):527–33.

  • 83.

    Vani GT, Mukesh N, Siva Prasad B, Rama Devi P, Hema Prasad M, et al. Association of CYP1A1*2A polymorphism with male infertility in Indian population. Clin Chim Acta 2009;410(1–2):43–7.

  • 84.

    Aydos SE, Taspinar M, Sunguroglu A, Aydos K. Association of CYP1A1 and glutathione S-transferase polymorphisms with male factor infertility. Fertil Steril 2009;92(2):541–7.

  • 85.

    Yarosh SL, Kokhtenko EV, Starodubova NI, Churnosov MI, Polonikov AV. Smoking status modifies the relation between CYP1A1*2C gene polymorphism and idiopathic male infertility: the importance of gene-environment interaction analysis for genetic studies of the disease. Reprod Sci 2013;20(11):1302–7.

  • 86.

    O’Connell SG, Kind LD, Anderson KA. Silicone wristbands as personal passive samplers. Environ Sci Technol 2014;48(6):3327–35.

  • 87.

    Penning TM. Human aldo-keto reductases and the metabolic activation of polycyclic aromatic hydrocarbons. Chem Res Toxicol 2014;27(11):1901–17.

  • 88.

    Palackal NT, Burczynski ME, Harvey RG, Penning TM. The ubiquitous aldehyde reductase (AKR1A1) oxidizes proximate carcinogen trans-dihydrodiols to o-quinones: potential role in polycyclic aromatic hydrocarbon activation. Biochemistry 2001;40(36):10901–10.

  • 89.

    Sharma RK, Pasqualotto FF, Nelson DR, Thomas AJ Jr, Agarwal A. The reactive oxygen species – total antioxidant capacity score is a new measure of oxidative stress to predict male infertility. Hum Reprod 1999;14(11):2801–7.

  • 90.

    Agarwal A, Makker K, Sharma R. Clinical relevance of oxidative stress in male factor infertility: an update. Am J Reprod Immunol 2008;59(1):2–11.

  • 91.

    Penning TM, Ohnishi ST, Ohnishi T, Harvey RG. Generation of reactive oxygen species during the enzymatic oxidation of polycyclic aromatic hydrocarbon trans-dihydrodiols catalyzed by dihydrodiol dehydrogenase. Chem Res Toxicol 1996;9(1):84–92.

  • 92.

    Eskenazi B, Kidd SA, Marks AR, Sloter E, Block G, et al. Antioxidant intake is associated with semen quality in healthy men. Hum Reprod 2005;20(4):1006–12.

  • 93.

    Hecht SS, Carmella SG, Yoder A, Chen M, Li ZZ, et al. Comparison of polymorphisms in genes involved in polycyclic aromatic hydrocarbon metabolism with urinary phenanthrene metabolite ratios in smokers. Cancer Epidemiol Biomarkers Prev 2006;15(10):1805–11.

  • 94.

    Hakkola J, Pelkonen O, Pasanen M, Raunio H. Xenobiotic-metabolizing cytochrome P450 enzymes in the human feto-placental unit: role in intrauterine toxicity. Crit Rev Toxicol 1998;28(1):35–72.

  • 95.

    Fraga CG, Motchnik PA, Wyrobek AJ, Rempel DM, Ames BN. Smoking and low antioxidant levels increase oxidative damage to sperm DNA. Mutat Res 1996;351(2):199–203.

  • 96.

    Mostafa T, Tawadrous G, Roaia MM, Amer MK, Kader RA, et al. Effect of smoking on seminal plasma ascorbic acid in infertile and fertile males. Andrologia 2006;38(6):221–4.

  • 97.

    Saleh RA, Agarwal A, Sharma RK, Nelson DR, Thomas AJ Jr. Effect of cigarette smoking on level of seminal oxidative stress in fertile men: a prospective study. Fertil Steril 2002;78(3):491–9.

  • 98.

    Kao SH, Chao HT, Chen HW, Hwang TI, Liao TL, et al. Increase of oxidative stress in human sperm with lower motility. Fertil Steril 2008;89(5):1183–90.

  • 99.

    Aydemir B, Onaran I, Kiziler AR, Alici B, Akyolcu MC. The influence of oxidative damage on viscosity of seminal fluid in infertile men. J Androl 2008;29(1):41–6.

  • 100.

    Sharma RK, Pasqualotto AE, Nelson DR, Thomas AJ Jr, Agarwal A. Relationship between seminal white blood cell counts and oxidative stress in men treated at an infertility clinic. J Androl 2001;22(4):575–83.

  • 101.

    Tremellen K. Oxidative stress and male infertility – a clinical perspective. Hum Reprod Update 2008;14(3):243–58.

  • 102.

    Tavilani H, Doosti M, Saeidi H. Malondialdehyde levels in sperm and seminal plasma of asthenozoospermic and its relationship with semen parameters. Clin Chim Acta 2005;356(1–2):199–203.

  • 103.

    Li K, Shang XJ, Chen YG. High-performance liquid chromatographic detection of lipid peroxidation in human seminal plasma and its application to male infertility. Clin Chim Acta 2004;346(2):199–203.

  • 104.

    Ko EY, Sabanegh ES, Agarwal A. Male infertility testing: reactive oxygen species and antioxidant capacity. Fertil Steril 2014;102(6):1518–27.

  • 105.

    Gharagozloo P, Aitken RJ. The role of sperm oxidative stress in male infertility and the significance of oral antioxidant therapy. Hum Reprod 2011;26(7):1628–40.

  • 106.

    Inyang F, Ramesh A, Kopsombut P, Niaz MS, Hood DB, et al. Disruption of testicular steroidogenesis and epididymal function by inhaled benzo(a)pyrene. Reprod Toxicol 2003;17(5):527–37.

  • 107.

    Arafa HM, Aly HA, Abd-Ellah MF, El-Refaey HM. Hesperidin attenuates benzo alpha pyrene-induced testicular toxicity in rats via regulation of oxidant/antioxidant balance. Toxicol Ind Health 2009;25(6):417–27.

  • 108.

    Peretti-Watel P, L’Haridon O, Seror V. Time preferences, socioeconomic status and smokers’ behaviour, attitudes and risk awareness. Eur J Public Health 2013;23(5):783–8.

  • 109.

    Winkleby MA, Jatulis DE, Frank E, Fortmann SP. Socioeconomic-status and health-How education, income, and occupation contribute to risk-factors for cardiovascualr-disease. Am J Public Health 1992;82(6):816–20.

  • 110.

    Gilman SE, Breslau J, Subramanian SV, Hitsman B, Koenen KC. Social factors psychopathology, and maternal smoking during pregnancy. Am J Public Health 2008;98(3):448–53.

  • 111.

    Williams DR. Race, socioeconomic status, and health – The added effects of racism and discrimination. Ann NY Acad Sci 1999;896:173–88.

Purchase article
Get instant unlimited access to the article.
Log in
Already have access? Please log in.

Journal + Issues

Reviews on Environmental Health is an international quarterly periodical that fills the need for rapid publication of specialized comprehensive review articles on hot topics in the field of environmental health. The journal is an inspiring forum for scientists, environmentalists, physicians, engineers and students active in the area of public health, including quality of life.