Application of metabolomics to characterize environmental pollutant toxicity and disease risks

Pan Deng 1 , 2 , Xusheng Li 1 , 3 , Michael C. Petriello 1 , 4 , Chunyan Wang 1 , 2 , Andrew J. Morris 1 , 4 ,  and Bernhard Hennig 1 , 2
  • 1 Superfund Research Center, University of Kentucky, Lexington, KY, USA
  • 2 Department of Animal and Food Sciences, College of Agriculture, Food and Environment, University of Kentucky, KY, Lexington, USA
  • 3 Department of Food Science and Engineering, Institute of Food Safety and Nutrition, College of Science and Engineering, Jinan University, Guangzhou, PR China
  • 4 Division of Cardiovascular Medicine, College of Medicine, University of Kentucky, and Lexington Veterans Affairs Medical Center, KY, Lexington, USA
Pan Deng
  • Superfund Research Center, University of Kentucky, Lexington, KY, USA
  • Department of Animal and Food Sciences, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, USA
  • Search for other articles:
  • degruyter.comGoogle Scholar
, Xusheng Li
  • Superfund Research Center, University of Kentucky, Lexington, KY, USA
  • Department of Food Science and Engineering, Institute of Food Safety and Nutrition, College of Science and Engineering, Jinan University, Guangzhou, PR China
  • Search for other articles:
  • degruyter.comGoogle Scholar
, Michael C. Petriello
  • Superfund Research Center, University of Kentucky, Lexington, KY, USA
  • Division of Cardiovascular Medicine, College of Medicine, University of Kentucky, and Lexington Veterans Affairs Medical Center, Lexington, KY, USA
  • Search for other articles:
  • degruyter.comGoogle Scholar
, Chunyan Wang
  • Superfund Research Center, University of Kentucky, Lexington, KY, USA
  • Department of Animal and Food Sciences, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, USA
  • Search for other articles:
  • degruyter.comGoogle Scholar
, Andrew J. Morris
  • Superfund Research Center, University of Kentucky, Lexington, KY, USA
  • Division of Cardiovascular Medicine, College of Medicine, University of Kentucky, and Lexington Veterans Affairs Medical Center, Lexington, KY, USA
  • Search for other articles:
  • degruyter.comGoogle Scholar
and Bernhard Hennig
  • Corresponding author
  • Superfund Research Center, University of Kentucky, Lexington, KY, USA
  • Department of Animal and Food Sciences, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, USA
  • Email
  • Search for other articles:
  • degruyter.comGoogle Scholar

Abstract

The increased incidence of non-communicable human diseases may be attributed, at least partially, to exposures to toxic chemicals such as persistent organic pollutants (POPs), air pollutants and heavy metals. Given the high mortality and morbidity of pollutant exposure associated diseases, a better understanding of the related mechanisms of toxicity and impacts on the endogenous host metabolism are needed. The metabolome represents the collection of the intermediates and end products of cellular processes, and is the most proximal reporter of the body’s response to environmental exposures and pathological processes. Metabolomics is a powerful tool for studying how organisms interact with their environment and how these interactions shape diseases related to pollutant exposure. This mini review discusses potential biological mechanisms that link pollutant exposure to metabolic disturbances and chronic human diseases, with a focus on recent studies that demonstrate the application of metabolomics as a tool to elucidate biochemical modes of actions of various environmental pollutants. In addition, classes of metabolites that have been shown to be modulated by multiple environmental pollutants will be discussed with an emphasis on their use as potential early biomarkers of disease risks. Taken together, metabolomics is a useful and versatile tool for characterizing the disease risks and mechanisms associated with various environmental pollutants.

  • 1.

    Ab Manan N, Noor Aizuddin A, Hod R. Effect of air pollution and hospital admission: a systematic review. Ann Glob Health 2018;84:670–8.

    • Crossref
    • PubMed
    • Export Citation
  • 2.

    Khera AV, Emdin CA, Drake I, Natarajan P, Bick AG, Cook NR, et al. Genetic risk, adherence to a healthy lifestyle, and coronary disease. N Engl J Med 2016;375:2349–58.

    • Crossref
    • PubMed
    • Export Citation
  • 3.

    Hennig B, Petriello MC, Gamble MV, Surh YJ, Kresty LA, Frank N, et al. The role of nutrition in influencing mechanisms involved in environmentally mediated diseases. Rev Environ Health 2018;33:87–97.

    • Crossref
    • PubMed
    • Export Citation
  • 4.

    Au WW. Life style factors and acquired susceptibility to environmental disease. Int J Hyg Environ Health 2001;204:17–22.

    • Crossref
    • PubMed
    • Export Citation
  • 5.

    Zeliger HI. Co-morbidities of environmental diseases: a common cause. Interdiscip Toxicol 2014;7:117–22.

    • Crossref
    • Export Citation
  • 6.

    Landrigan PJ, Fuller R, Horton R. Environmental pollution, health, and development: a Lancet-Global Alliance on Health and Pollution-Icahn School of Medicine at Mount Sinai Commission. Lancet 2015;386:1429–31.

    • Crossref
    • Export Citation
  • 7.

    Prüss-Ustün A, Wolf J, Corvalan C, Neville T, Bos R, Neira M. Diseases due to unhealthy environments: an updated estimate of the global burden of disease attributable to environmental determinants of health. J Public Health (Oxf) 2017;39:464–75.

    • PubMed
    • Export Citation
  • 8.

    Prüss-Ustün A, Wolf J, Corvalán C, Bos R, Neira M. Preventing disease through healthy environments: a global assessment of the burden of disease from environmental risks. World Health Organization; 2016. Available at: https://www.who.int/quantifying_ehimpacts/publications/preventing-disease/en/.

  • 9.

    Yan M, Xu G. Current and future perspectives of functional metabolomics in disease studies – a review. Anal Chim Acta 2018;1037:41–54.

    • Crossref
    • PubMed
    • Export Citation
  • 10.

    Amberg A, Riefke B, Schlotterbeck G, Ross A, Senn H, Dieterle F. NMR and MS methods for metabolomics. Methods Mol Biol 2017;1641:229–58.

    • Crossref
    • PubMed
    • Export Citation
  • 11.

    Kumar B, Prakash A, Ruhela RK, Medhi B. Potential of metabolomics in preclinical and clinical drug development. Pharmacol Rep 2014;66:956–63.

    • Crossref
    • PubMed
    • Export Citation
  • 12.

    Zhang L, Hatzakis E, Nichols RG, Hao R, Correll J, Smith PB, et al. Metabolomics reveals that aryl hydrocarbon receptor activation by environmental chemicals induces systemic metabolic dysfunction in mice. Environ Sci Technol 2015;49:8067–77.

    • Crossref
    • PubMed
    • Export Citation
  • 13.

    Huang MC, Douillet C, Su M, Zhou K, Wu T, Chen W, et al. Metabolomic profiles of arsenic (+3 oxidation state) methyltransferase knockout mice: effect of sex and arsenic exposure. Arch Toxicol 2017;91:189–202.

    • Crossref
    • PubMed
    • Export Citation
  • 14.

    Zhang L, Nichols RG, Correll J, Murray IA, Tanaka N, Smith PB, et al. Persistent organic pollutants modify gut microbiota-host metabolic homeostasis in mice through aryl hydrocarbon receptor activation. Environ Health Perspect 2015;123:679–88.

    • Crossref
    • PubMed
    • Export Citation
  • 15.

    Xue J, Lai Y, Chi L, Tu P, Leng J, Liu CW, et al. Serum metabolomics reveals that gut microbiome perturbation mediates metabolic disruption induced by arsenic exposure in mice. J Proteome Res 2019;18:1006–18.

    • Crossref
    • PubMed
    • Export Citation
  • 16.

    Kim SJ, Heo SH, Lee DS, Hwang IG, Lee YB, Cho HY. Gender differences in pharmacokinetics and tissue distribution of 3 perfluoroalkyl and polyfluoroalkyl substances in rats. Food Chem Toxicol 2016;97:243–55.

    • Crossref
    • PubMed
    • Export Citation
  • 17.

    Kundakovic M, Gudsnuk K, Herbstman JB, Tang D, Perera FP, Champagne FA. DNA methylation of BDNF as a biomarker of early-life adversity. Proc Natl Acad Sci USA 2015;112:6807–13.

    • Crossref
    • Export Citation
  • 18.

    Leasure JL, Giddabasappa A, Chaney S, Johnson Jr. JE, Pothakos K, Lau YS, et al. Low-level human equivalent gestational lead exposure produces sex-specific motor and coordination abnormalities and late-onset obesity in year-old mice. Environ Health Perspect 2008;116:355–61.

    • Crossref
    • Export Citation
  • 19.

    Fearnley LG, Inouye M. Metabolomics in epidemiology: from metabolite concentrations to integrative reaction networks. Int J Epidemiol 2016;45:1319–28.

    • Crossref
    • PubMed
    • Export Citation
  • 20.

    Cho S, Khan A, Jee SH, Lee HS, Hwang MS, Koo YE, et al. High resolution metabolomics to determines the risk associated with bisphenol A exposure in humans. Environ Toxicol Pharmacol 2018;58:1–10.

    • Crossref
    • PubMed
    • Export Citation
  • 21.

    Jeanneret F, Boccard J, Badoud F, Sorg O, Tonoli D, Pelclova D, et al. Human urinary biomarkers of dioxin exposure: analysis by metabolomics and biologically driven data dimensionality reduction. Toxicol Lett 2014;230:234–43.

    • Crossref
    • PubMed
    • Export Citation
  • 22.

    Wang Z, Zheng Y, Zhao B, Zhang Y, Liu Z, Xu J, et al. Human metabolic responses to chronic environmental polycyclic aromatic hydrocarbon exposure by a metabolomic approach. J Proteome Res 2015;14:2583–93.

    • Crossref
    • PubMed
    • Export Citation
  • 23.

    Alderete TL, Jin R, Walker DI, Valvi D, Chen Z, Jones DP, et al. Perfluoroalkyl substances, metabolomic profiling, and alterations in glucose homeostasis among overweight and obese Hispanic children: a proof-of-concept analysis. Environ Int 2019;126:445–53.

    • Crossref
    • PubMed
    • Export Citation
  • 24.

    van Veldhoven K, Kiss A, Keski-Rahkonen P, Robinot N, Scalbert A, Cullinan P, et al. Impact of short-term traffic-related air pollution on the metabolome – results from two metabolome-wide experimental studies. Environ Int 2019;123:124–31.

    • Crossref
    • PubMed
    • Export Citation
  • 25.

    Cheng W, Duncan KE, Ghio AJ, Ward-Caviness C, Karoly ED, Diaz-Sanchez D, et al. Changes in metabolites present in lung-lining fluid following exposure of humans to ozone. Toxicol Sci 2018;163:430–9.

    • Crossref
    • PubMed
    • Export Citation
  • 26.

    Li H, Cai J, Chen R, Zhao Z, Ying Z, Wang L, et al. Particulate matter exposure and stress hormone levels: a randomized, double-blind, crossover trial of air purification. Circulation 2017;136:618–27.

    • Crossref
    • Export Citation
  • 27.

    Sun R, Xu K, Zhang Q, Jiang X, Man Z, Yin L, et al. Plasma metabonomics investigation reveals involvement of fatty acid oxidation in hematotoxicity in Chinese benzene-exposed workers with low white blood cell count. Environ Sci Pollut Res Int 2018;25:32506–14.

    • Crossref
    • PubMed
    • Export Citation
  • 28.

    Liang D, Moutinho JL, Golan R, Yu T, Ladva CN, Niedzwiecki M, et al. Use of high-resolution metabolomics for the identification of metabolic signals associated with traffic-related air pollution. Environ Int 2018;120:145–54.

    • Crossref
    • PubMed
    • Export Citation
  • 29.

    Wu F, Chi L, Ru H, Parvez F, Slavkovich V, Eunus M, et al. Arsenic exposure from drinking water and urinary metabolomics: associations and long-term reproducibility in Bangladesh adults. Environ Health Perspect 2018;126:017005.

    • Crossref
    • PubMed
    • Export Citation
  • 30.

    Xu Y, Wang J, Liang X, Gao Y, Chen W, Huang Q, et al. Urine metabolomics of women from small villages exposed to high environmental cadmium levels. Environ Toxicol Chem 2016;35:1268–75.

    • Crossref
    • PubMed
    • Export Citation
  • 31.

    Eguchi A, Nomiyama K, Sakurai K, Kim Trang PT, Viet PH, Takahashi S, et al. Alterations in urinary metabolomic profiles due to lead exposure from a lead-acid battery recycling site. Environ Pollut 2018;242:98–105.

    • Crossref
    • PubMed
    • Export Citation
  • 32.

    Vineis P, van Veldhoven K, Chadeau-Hyam M, Athersuch TJ. Advancing the application of omics-based biomarkers in environmental epidemiology. Environ Mol Mutagen 2013;54:461–7.

    • Crossref
    • PubMed
    • Export Citation
  • 33.

    Jeong A, Fiorito G, Keski-Rahkonen P, Imboden M, Kiss A, Robinot N, et al. Perturbation of metabolic pathways mediates the association of air pollutants with asthma and cardiovascular diseases. Environ Int 2018;119:334–45.

    • Crossref
    • PubMed
    • Export Citation
  • 34.

    Chadeau-Hyam M, Athersuch TJ, Keun HC, De Iorio M, Ebbels TM, Jenab M, et al. Meeting-in-the-middle using metabolic profiling – a strategy for the identification of intermediate biomarkers in cohort studies. Biomarkers 2011;16:83–8.

    • Crossref
    • PubMed
    • Export Citation
  • 35.

    Wishart DS, Feunang YD, Marcu A, Guo AC, Liang K, Vazquez-Fresno R, et al. HMDB 4.0: the human metabolome database for 2018. Nucleic Acids Res 2018;46:D608–17.

    • Crossref
    • PubMed
    • Export Citation
  • 36.

    Ashraf MA. Persistent organic pollutants (POPs): a global issue, a global challenge. Environ Sci Pollut Res Int 2017;24:4223–7.

    • Crossref
    • PubMed
    • Export Citation
  • 37.

    Wu H, Bertrand KA, Choi AL, Hu FB, Laden F, Grandjean P, et al. Persistent organic pollutants and type 2 diabetes: a prospective analysis in the nurses’ health study and meta-analysis. Environ Health Perspect 2013;121:153–61.

    • Crossref
    • PubMed
    • Export Citation
  • 38.

    Dusanov S, Ruzzin J, Kiviranta H, Klemsdal TO, Retterstol L, Rantakokko P, et al. Associations between persistent organic pollutants and metabolic syndrome in morbidly obese individuals. Nutr Metab Cardiovasc Dis 2018;28:735–42.

    • Crossref
    • PubMed
    • Export Citation
  • 39.

    Heindel JJ, Blumberg B, Cave M, Machtinger R, Mantovani A, Mendez MA, et al. Metabolism disrupting chemicals and metabolic disorders. Reprod Toxicol 2017;68:3–33.

    • Crossref
    • PubMed
    • Export Citation
  • 40.

    Gadupudi GS, Klaren WD, Olivier AK, Klingelhutz AJ, Robertson LW. PCB126-induced disruption in gluconeogenesis and fatty acid oxidation precedes fatty liver in male rats. Toxicol Sci 2016;149:98–110.

    • Crossref
    • PubMed
    • Export Citation
  • 41.

    Wu X, Yang J, Morisseau C, Robertson LW, Hammock B, Lehmler HJ. 3,3′,4,4′,5-Pentachlorobiphenyl (PCB 126) decreases hepatic and systemic ratios of epoxide to diol metabolites of unsaturated fatty acids in male rats. Toxicol Sci 2016;152: 309–22.

    • Crossref
    • PubMed
    • Export Citation
  • 42.

    Wu H, Yu W, Meng F, Mi J, Peng J, Liu J, et al. Polychlorinated biphenyls-153 induces metabolic dysfunction through activation of ROS/NF-kappaB signaling via downregulation of HNF1b. Redox Biol 2017;12:300–10.

    • Crossref
    • PubMed
    • Export Citation
  • 43.

    Wahlang B, Barney J, Thompson B, Wang C, Hamad OM, Hoffman JB, et al. Editor’s highlight: PCB126 exposure increases risk for peripheral vascular diseases in a liver injury mouse model. Toxicol Sci 2017;160:256–67.

    • Crossref
    • Export Citation
  • 44.

    Deng P, Barney J, Petriello MC, Morris AJ, Wahlang B, Hennig B. Hepatic metabolomics reveals that liver injury increases PCB 126-induced oxidative stress and metabolic dysfunction. Chemosphere 2019;217:140–9.

    • Crossref
    • PubMed
    • Export Citation
  • 45.

    Petriello MC, Hoffman JB, Vsevolozhskaya O, Morris AJ, Hennig B. Dioxin-like PCB 126 increases intestinal inflammation and disrupts gut microbiota and metabolic homeostasis. Environ Pollut 2018;242:1022–32.

    • Crossref
    • PubMed
    • Export Citation
  • 46.

    Zhang L, Nichols RG, Patterson AD. The aryl hydrocarbon receptor as a moderator of host-microbiota communication. Curr Opin Toxicol 2017;2:30–5.

    • Crossref
    • PubMed
    • Export Citation
  • 47.

    Hoffman JB, Flythe MD, Hennig B. Environmental pollutant-mediated disruption of gut microbial metabolism of the prebiotic inulin. Anaerobe 2019;55:96–102.

    • Crossref
    • PubMed
    • Export Citation
  • 48.

    Carrizo D, Chevallier OP, Woodside JV, Brennan SF, Cantwell MM, Cuskelly G, et al. Untargeted metabolomic analysis of human serum samples associated with exposure levels of Persistent organic pollutants indicate important perturbations in Sphingolipids and Glycerophospholipids levels. Chemosphere 2017;168:731–8.

    • Crossref
    • PubMed
    • Export Citation
  • 49.

    Jeanneret F, Tonoli D, Hochstrasser D, Saurat JH, Sorg O, Boccard J, et al. Evaluation and identification of dioxin exposure biomarkers in human urine by high-resolution metabolomics, multivariate analysis and in vitro synthesis. Toxicol Lett 2016;240:22–31.

    • Crossref
    • PubMed
    • Export Citation
  • 50.

    Zbucka-Kretowska M, Zbucki R, Parfieniuk E, Maslyk M, Lazarek U, Miltyk W, et al. Evaluation of Bisphenol A influence on endocannabinoid system in pregnant women. Chemosphere 2018;203:387–92.

    • Crossref
    • PubMed
    • Export Citation
  • 51.

    Salihovic S, Fall T, Ganna A, Broeckling CD, Prenni JE, Hyotylainen T, et al. Identification of metabolic profiles associated with human exposure to perfluoroalkyl substances. J Expo Sci Environ Epidemiol 2019;29:196–205.

    • Crossref
    • PubMed
    • Export Citation
  • 52.

    Kingsley SL, Walker DI, Calafat AM, Chen A, Papandonatos GD, Xu Y, et al. Metabolomics of childhood exposure to perfluoroalkyl substances: a cross-sectional study. Metabolomics 2019;15:95.

    • Crossref
    • PubMed
    • Export Citation
  • 53.

    Guasch-Ferre M, Hruby A, Toledo E, Clish CB, Martinez-Gonzalez MA, Salas-Salvado J, et al. Metabolomics in prediabetes and diabetes: a systematic review and meta-analysis. Diabetes Care 2016;39:833–46.

    • Crossref
    • PubMed
    • Export Citation
  • 54.

    Newgard CB. Metabolomics and metabolic diseases: where do we stand? Cell Metab 2017;25:43–56.

    • Crossref
    • PubMed
    • Export Citation
  • 55.

    Langrish JP, Bosson J, Unosson J, Muala A, Newby DE, Mills NL, et al. Cardiovascular effects of particulate air pollution exposure: time course and underlying mechanisms. J Intern Med 2012;272:224–39.

    • Crossref
    • PubMed
    • Export Citation
  • 56.

    Campbell-Lendrum D, Pruss-Ustun A. Climate change, air pollution and noncommunicable diseases. Bull World Health Organ 2019;97:160–1.

    • Crossref
    • PubMed
    • Export Citation
  • 57.

    Landrigan PJ, Fuller R, Acosta NJ, Adeyi O, Arnold R, Basu NN, et al. The Lancet Commission on pollution and health. Lancet 2018;391:462–512.

    • Crossref
    • PubMed
    • Export Citation
  • 58.

    Hadley MB, Baumgartner J, Vedanthan R. Developing a clinical approach to air pollution and cardiovascular health. Circulation 2018;137:725–42.

    • Crossref
    • PubMed
    • Export Citation
  • 59.

    Lavigne E, Belair MA, Do MT, Stieb DM, Hystad P, van Donkelaar A, et al. Maternal exposure to ambient air pollution and risk of early childhood cancers: a population-based study in Ontario, Canada. Environ Int 2017;100:139–47.

    • Crossref
    • PubMed
    • Export Citation
  • 60.

    Chen H, Kwong JC, Copes R, Tu K, Villeneuve PJ, van Donkelaar A, et al. Living near major roads and the incidence of dementia, Parkinson’s disease, and multiple sclerosis: a population-based cohort study. Lancet 2017;389:718–26.

    • Crossref
    • PubMed
    • Export Citation
  • 61.

    Schraufnagel DE, Balmes JR, Cowl CT, De Matteis S, Jung SH, Mortimer K, et al. Air pollution and noncommunicable diseases: a review by the forum of international respiratory societies’ environmental committee, part 2: air pollution and organ systems. Chest 2019;155:417–26.

    • Crossref
    • PubMed
    • Export Citation
  • 62.

    Bernatsky S, Smargiassi A, Barnabe C, Svenson LW, Brand A, Martin RV, et al. Fine particulate air pollution and systemic autoimmune rheumatic disease in two Canadian provinces. Environ Res 2016;146:85–91.

    • Crossref
    • PubMed
    • Export Citation
  • 63.

    Bernatsky S, Smargiassi A, Johnson M, Kaplan GG, Barnabe C, Svenson L, et al. Fine particulate air pollution, nitrogen dioxide, and systemic autoimmune rheumatic disease in Calgary, Alberta. Environ Res 2015;140:474–8.

    • Crossref
    • PubMed
    • Export Citation
  • 64.

    Lodovici M, Bigagli E. Oxidative stress and air pollution exposure. J Toxicol 2011;2011:487074.

    • PubMed
    • Export Citation
  • 65.

    Zhang Y, Li Y, Shi Z, Wu J, Yang X, Feng L, et al. Metabolic impact induced by total, water soluble and insoluble components of PM2.5 acute exposure in mice. Chemosphere 2018;207:337–46.

    • Crossref
    • PubMed
    • Export Citation
  • 66.

    Zhang Y, Hu H, Shi Y, Yang X, Cao L, Wu J, et al. (1)H NMR-based metabolomics study on repeat dose toxicity of fine particulate matter in rats after intratracheal instillation. Sci Total Environ 2017;589:212–21.

    • Crossref
    • Export Citation
  • 67.

    Wang X, Jiang S, Liu Y, Du X, Zhang W, Zhang J, et al. Comprehensive pulmonary metabolome responses to intratracheal instillation of airborne fine particulate matter in rats. Sci Total Environ 2017;592:41–50.

    • Crossref
    • PubMed
    • Export Citation
  • 68.

    Sun R, Zhang J, Xiong M, Chen Y, Yin L, Pu Y. Metabonomics biomarkers for subacute toxicity screening for benzene exposure in mice. J Toxicol Environ Health A 2012;75:1163–73.

    • Crossref
    • PubMed
    • Export Citation
  • 69.

    Brower JB, Doyle-Eisele M, Moeller B, Stirdivant S, McDonald JD, Campen MJ. Metabolomic changes in murine serum following inhalation exposure to gasoline and diesel engine emissions. Inhal Toxicol 2016;28:241–50.

    • Crossref
    • PubMed
    • Export Citation
  • 70.

    Zhao C, Niu M, Song S, Li J, Su Z, Wang Y, et al. Serum metabolomics analysis of mice that received repeated airway exposure to a water-soluble PM2.5 extract. Ecotoxicol Environ Saf 2019;168:102–9.

    • Crossref
    • PubMed
    • Export Citation
  • 71.

    Miller DB, Karoly ED, Jones JC, Ward WO, Vallanat BD, Andrews DL, et al. Inhaled ozone (O3)-induces changes in serum metabolomic and liver transcriptomic profiles in rats. Toxicol Appl Pharmacol 2015;286:65–79.

    • Crossref
    • PubMed
    • Export Citation
  • 72.

    Breitner S, Schneider A, Devlin RB, Ward-Caviness CK, Diaz-Sanchez D, Neas LM, et al. Associations among plasma metabolite levels and short-term exposure to PM2.5 and ozone in a cardiac catheterization cohort. Environ Int 2016;97:76–84.

    • Crossref
    • Export Citation
  • 73.

    Zhang SY, Shao D, Liu H, Feng J, Feng B, Song X, et al. Metabolomics analysis reveals that benzo[a]pyrene, a component of PM2.5, promotes pulmonary injury by modifying lipid metabolism in a phospholipase A2-dependent manner in vivo and in vitro. Redox Biol 2017;13:459–69.

    • Crossref
    • Export Citation
  • 74.

    Ladva CN, Golan R, Liang D, Greenwald R, Walker DI, Uppal K, et al. Particulate metal exposures induce plasma metabolome changes in a commuter panel study. PLoS One 2018;13:e0203468.

    • Crossref
    • Export Citation
  • 75.

    Jaishankar M, Tseten T, Anbalagan N, Mathew BB, Beeregowda KN. Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol 2014;7:60–72.

    • Crossref
    • PubMed
    • Export Citation
  • 76.

    Caito S, Aschner M. Neurotoxicity of metals. Handb Clin Neurol 2015;131:169–89.

    • Crossref
    • PubMed
    • Export Citation
  • 77.

    Branca JJV, Morucci G, Pacini A. Cadmium-induced neurotoxicity: still much ado. Neural Regen Res 2018;13:1879–82.

    • Crossref
    • PubMed
    • Export Citation
  • 78.

    Zong L, Xing J, Liu S, Liu Z, Song F. Cell metabolomics reveals the neurotoxicity mechanism of cadmium in PC12 cells. Ecotoxicol Environ Saf 2018;147:26–33.

    • Crossref
    • PubMed
    • Export Citation
  • 79.

    Sarma SN, Saleem A, Lee JY, Tokumoto M, Hwang GW, Man Chan H, et al. Effects of long-term cadmium exposure on urinary metabolite profiles in mice. J Toxicol Sci 2018;43:89–100.

    • Crossref
    • PubMed
    • Export Citation
  • 80.

    Chen S, Zhang M, Bo L, Li S, Hu L, Zhao X, et al. Metabolomic analysis of the toxic effect of chronic exposure of cadmium on rat urine. Environ Sci Pollut Res Int 2018;25:3765–74.

    • Crossref
    • PubMed
    • Export Citation
  • 81.

    Moon K, Guallar E, Navas-Acien A. Arsenic exposure and cardiovascular disease: an updated systematic review. Curr Atheroscler Rep 2012;14:542–55.

    • Crossref
    • PubMed
    • Export Citation
  • 82.

    Chen Y, Wu F, Liu M, Parvez F, Slavkovich V, Eunus M, et al. A prospective study of arsenic exposure, arsenic methylation capacity, and risk of cardiovascular disease in Bangladesh. Environ Health Perspect 2013;121:832–8.

    • Crossref
    • PubMed
    • Export Citation
  • 83.

    Spratlen MJ, Grau-Perez M, Umans JG, Yracheta J, Best LG, Francesconi K, et al. Targeted metabolomics to understand the association between arsenic metabolism and diabetes-related outcomes: preliminary evidence from the Strong Heart Family Study. Environ Res 2019;168:146–57.

    • Crossref
    • PubMed
    • Export Citation
  • 84.

    Baker MG, Simpson CD, Lin YS, Shireman LM, Seixas N. The use of metabolomics to identify biological signatures of manganese exposure. Ann Work Expo Health 2017;61:406–15.

    • Crossref
    • PubMed
    • Export Citation
  • 85.

    Beans C. News feature: exposing the exposome to elucidate disease. Proc Natl Acad Sci USA 2018;115:11859–62.

    • Crossref
    • Export Citation
  • 86.

    Fave MJ, Lamaze FC, Soave D, Hodgkinson A, Gauvin H, Bruat V, et al. Gene-by-environment interactions in urban populations modulate risk phenotypes. Nat Commun 2018;9:827.

    • Crossref
    • PubMed
    • Export Citation
  • 87.

    Karoui A, Crochemore C, Mulder P, Preterre D, Cazier F, Dewaele D, et al. An integrated functional and transcriptomic analysis reveals that repeated exposure to diesel exhaust induces sustained mitochondrial and cardiac dysfunctions. Environ Pollut 2019;246:518–26.

    • Crossref
    • PubMed
    • Export Citation
Purchase article
Get instant unlimited access to the article.
$42.00
Log in
Already have access? Please log in.


or
Log in with your institution

Journal + Issues

Reviews on Environmental Health is an international quarterly periodical that fills the need for rapid publication of specialized comprehensive review articles on hot topics in the field of environmental health. The journal is an inspiring forum for scientists, environmentalists, physicians, engineers and students active in the area of public health, including quality of life.

Search