Electric foot shock stress: a useful tool in neuropsychiatric studies

Anjana Bali 1  and Amteshwar Singh Jaggi 1
  • 1 Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, India
Anjana Bali and Amteshwar Singh Jaggi

Abstract

Electric foot shock is a complex stressor with both physical and emotional components. It has been employed as an important tool to develop diverse animal models in the field of psychopharmacology. The electric foot shock paradigm includes acute or chronic exposures of shocks of varying intensity and duration on an electrified grid floor in an electric foot shock apparatus. Research evidence reveals that foot shocks of varying intensity produce behavioral and neurochemical changes reflecting depression, anxiety, and post-traumatic stress disorder (PTSD) in humans. Animals generally do not habituate to foot shocks in comparison to other stressors, including loud noise, bright light, and hot and cold temperatures. Additionally, it offers an experimental advantage of control over intensity and duration; therefore, by varying its application parameters, different disorder models have been created. Electric foot shock fear conditioning-induced ultrasonic vocalization and fear-potentiated startle have been explored to develop models of anxiety and panic. Similarly, fear conditioning in the form of foot shock exposure followed by situational reminders has been used to develop a model of PTSD. Electric foot shock-induced conflict has been explored to develop operant conflict models (Geller-Seifter and Vogel tests), which in turn are pharmacologically validated to screen potential anti-anxiety agents. Inescapable electric shock-induced ‘learned helplessness’ mimics the symptomology of depression, and this phenomenon has been employed to develop the model of depression. The present review describes the pharmacologically validated models of anxiety, depression, and PTSD involving electric foot shock as an aversive stimulus.

  • Abramson, L.Y., Seligman, M.E., and Teasdale, J.D. (1978). Learned helplessness in humans: critique and reformulation. J. Abnorm. Psychol. 87, 49–74.

    • Crossref
    • Export Citation
  • Adamec, R.E. and Shallow, T. (1993). Lasting effects on rodent anxiety of a single exposure to a cat. Physiol. Behav. 54, 101–109.

    • Crossref
    • Export Citation
  • Agrawal, A., Jaggi, A.S., and Singh, N. (2011). Pharmacological investigations on adaptation in rats subjected to cold water immersion stress. Physiol. Behav. 103, 321–329.

    • Crossref
    • Export Citation
  • Amano, M., Goto, A., Sakai, A., Achiha, M., Takahashi, N., Hara, C., and Ogawa, N. (1993). Comparison of the anticonflict effect of buspirone and its major metabolite 1-(2-pyrimidinyl)-piperazine (1-PP) in rats. Jpn. J. Pharmacol. 61, 311–317.

    • Crossref
    • Export Citation
  • Amat, J., Baratta, M.V., Paul, E., Bland, S.T., Watkins, L.R., and Maier, S.F. (2005). Medial prefrontal cortex determines how stressor controllability affects behavior and dorsal raphe nucleus. Nat. Neurosci. 8, 365–371.

    • PubMed
    • Export Citation
  • Anagnostaras, S.G., Maren, S., and Fanselow, M.S. (1995). Scopolamine selectively disrupts the acquisition of contextual fear conditioning in rats. Neurobiol. Learn. Mem. 64, 191–194.

    • Crossref
    • PubMed
    • Export Citation
  • Anagnostaras, S.G., Maren, S., Sage, J.R., Goodrich, S., and Fanselow, M.S. (1999). Scopolamine and Pavlovian fear conditioning in rats: dose-effect analysis. Neuropsychopharmacol. 21, 731–744.

    • Crossref
    • Export Citation
  • Antoniadis, E.A. and McDonald, R.J. (2006). Fornix, medial prefrontal cortex, nucleus accumbens, and mediodorsal thalamic nucleus: roles in a fear-based context discrimination task. Neurobiol. Learn. Mem. 85, 71–85.

    • Crossref
    • Export Citation
  • Aston-Jones, G., Ennis, M., Pieribone, V.A., Nickell, W.T., and Shipley, M.T. (1986). The brain nucleus locus coeruleus: restricted afferent control of a broad efferent network. Science 234, 734–737.

    • Crossref
    • Export Citation
  • Babbini, M., Gaiardi, M., and Bartoletti, M. (1982). Benzodiazepine effects upon Geller–Seifter conflict test in rats: analysis of individual variability. Pharmacol. Biochem. Behav. 17, 43–48.

    • Crossref
    • Export Citation
  • Baca, E., Garcia-Garcia, M., and Porras-Chavarino, A. (2004). Gender differences in treatment response to sertraline versus imipramine in patients with nonmelancholic depressive disorders. Prog. Neuropsychopharmacol. Biol. Psychiatry 28, 57–65.

    • Crossref
    • Export Citation
  • Bali, A. and Jaggi, A.S. (2015). Electric foot shock stress adaptation: Does it exist or not? Life Sci. 130, 97–102.

    • Crossref
    • Export Citation
  • Basso, A.M., Gallagher, K.B., Mikusa, J.P., and Rueter, L.E. (2011). Vogel conflict test: sex differences and pharmacological validation of the model. Behav. Brain Res. 218, 174–183.

    • Crossref
    • Export Citation
  • Beatty, W.W. and Beatty, P.A. (1970). Hormonal determinants of sex differences in avoidance behavior and reactivity to electric shock in the rat. J. Comp. Physiol. Psychol. 73, 446–455.

    • Crossref
    • Export Citation
  • Beaufour, C.C., Balon, N., Le Bihan, C., Hamon, M., and Tiebot, M.H. (1999). Effects of chronic antidepressants in an operant conflict procedure of anxiety in the rat. Pharmacol. Biochem. Behav. 62, 591–599.

    • Crossref
    • Export Citation
  • Biederman, G.B. and Furedy, J.J. (1973). Preference-for-signaled-shock phenomenon: Effects of shock modifiability and light reinforcement. J. Exp. Psychology 100, 380–386.

    • Crossref
    • Export Citation
  • Borsini, F., Podhorna, J., and Marazziti, D. (2002). Do animal models of anxiety predict anxiolytic-like effects of antidepressants? Psychopharmacology 163, 121–141.

    • Crossref
    • Export Citation
  • Brown, J.S., Kalish, H.I., and Farber, I.E. (1951). Conditioned fear as revealed by magnitude of startle response to an auditory stimulus. J. Exp. Psychol. 41, 317–328.

    • Crossref
    • Export Citation
  • Campbell, B.A. and Masterson, F.A. (1969). Psychophysics of punishment. In: Punishment and aversive behavior, B.A. Campbell and R.M. Church, eds. (New York: AppletonCentury-Crofts).

  • Carrion, V.G., Weems, C.F., Ray, R.D., Glaser, B., Hessl, D., and Reiss, A.L. (2002). Diurnal salivary cortisol in pediatric posttraumatic stress disorder. Biol. Psychiatry 51, 575–582.

    • Crossref
    • PubMed
    • Export Citation
  • Chang, F.C. and Opp, M.R. (1998). Blockade of corticotropin-releasing hormone receptors reduces spontaneous waking in the rat. Am. J. Physiol. 275, R793–R802.

    • Crossref
    • Export Citation
  • Chauhan, E., Bali, A., Singh, N., and Jaggi, A.S. (2015). Pharmacological investigations on cross adaptation in mice subjected to stress immobilization. Life Sci. 127, 98–105.

    • Crossref
    • Export Citation
  • Chourbaji, S., Zacher, C., Sanchis-Segura, C., Dormann, C., Vollmayr, B., and Gass, P. (2005). Learned helplessness: validity and reliability of depressive-like states in mice. Brain Res. Brain Res. Protoc. 16, 70–78.

    • Crossref
    • PubMed
    • Export Citation
  • Chrapusta, S.J., Wyatt, R.J., and Masserano, J.M. (1997). Effects of single and repeated footshock on dopamine release and metabolism in the brains of Fischer rats. J. Neurochem. 68, 2024–2031.

    • Crossref
    • Export Citation
  • Christoffel, D.J., Golden, S.A., and Russo, S.J. (2011). Structural and synaptic plasticity in stress-related disorders. Rev. Neurosci. 22, 535–549.

    • Crossref
    • PubMed
    • Export Citation
  • Clark, R.E. and Squire, L.R. (1998). Classical conditioning and brain systems: The role of awareness. Science 280, 77–81.

    • Crossref
    • Export Citation
  • Cohen, H., Benjamin, J., Kaplan, Z., and Kotler, M. (2000). Administration of high-doseketoconazole, an inhibitor of steroid synthesis, prevents post traumatic anxiety in an animal model. Eur. Neuropsychopharmacol. 10, 429–435.

  • Cohen, R.M., Cohen, M.R., and McLellan, C.A. (1986). Foot shock induces time and region specific adrenergic receptor changes in rat brain. Pharmacol. Biochem. Behav. 24, 1587–1592.

    • Crossref
    • Export Citation
  • Cohen, H. and Yehuda, R. (2011). Gender differences in animal models of posttraumatic stress disorder. Dis. Markers. 30, 141–150.

    • Crossref
    • PubMed
    • Export Citation
  • Cole, S. and McNally, G.P. (2008). Complementary roles for amygdala and periaqueductal gray in temporal-difference fear learning. Learn Mem. 16, 1–7.

    • Crossref
    • PubMed
    • Export Citation
  • Corral-Frias, N.S., Lahood, R.P., Edelman-Vogelsang, K.E, French, E.D., and Fellous, J.M. (2013). Involvement of the ventral tegmental area in a rodent model of post-traumatic stress disorder. Neuropsychopharmacol. 38, 350–363.

    • Crossref
    • Export Citation
  • Cui, R., Li, B., Suemaru, K., and Araki, H. (2007). Differential effects of psychological and physical stress on the sleep pattern in rats. Acta. Med. Okayama. 61, 319–327.

    • PubMed
    • Export Citation
  • Dalla, C., Edgecomb, C., Whetstone, A.S., and Shors, T.J. (2008). Females do not express learned helplessness like males do. Neuropsychopharmacol. 33, 1559–1569.

    • Crossref
    • Export Citation
  • Davis, M. (1992). The role of the amygdala in fear-potentiated startle: implications for animal models of anxiety. Trends Pharmacol. Sci. 13, 35–41.

    • Crossref
    • Export Citation
  • de Almeida, L.P., Ramos, P.L., Pandossio, J.E., Landeira-Fernandez, J., Zangrossi, H Jr., and Nogueira, R.L. (2006). Prior electrical stimulation of dorsal periaqueductal grey matter or deep layers of the superior colliculus sensitizes rats to anxiety-like behaviors in the elevated T-maze test. Behav. Brain Res. 170, 175–181.

    • Crossref
    • Export Citation
  • de Novellis, V., Marabese, I., Uliano, R., Palazzo, E., Scafuro, A., sca Rossi, F., and Maione, S. (2000). Type I and II metabotropic glutamate receptors modulate periaqueductal grey glycine release: interaction between mGlu2/3 and A1 adenosine receptors. Neuropharmacol. 43, 1061–1069.

  • De Oca, B.M., DeCola, J.P., Maren, S., and Fanselow, M.S. (1998). Distinct regions of the periaqueductal gray are involved in the acquisition and expression of defensive responses. J. Neurosci. 18, 3426–3432.

    • Crossref
    • Export Citation
  • De Vry J., Benz, U., Schreiber, R., and Traber, J. (1993). Shock-induced ultrasonic vocalization in young adult rats: a model for testing putative anti-anxiety drugs. Eur. J. Pharmacol. 249, 331–339.

    • Crossref
    • Export Citation
  • Deschaux, O., Zheng, X., Lavigne, J., Nachon, O., Cleren, C., Moreau, J.L., and Garcia, R. (2013). Post-extinction fluoxetine treatment prevents stress-induced reemergence of extinguished fear. Psychopharmacology (Berl.) 225, 209–216.

    • Crossref
    • Export Citation
  • Diagnostic and Statistical Manual of Mental Disorders, 4th edition, American Psychiatric Association, 1994.

  • Enkel, T., Spanagel, R., Vollmayr, B., and Schneider, M. (2010). Stress triggers anhedonia in rats bred for learned helplessness. Behav. Brain Res. 209, 183–186.

    • Crossref
    • Export Citation
  • Fendt, M. (2000). Expression and conditioned inhibition of fear-potentiated startle after stimulation and blockade of AMPA/Kainate and GABA(A) receptors in the dorsal periaqueductal gray. Brain Res. 880, 1–10.

  • Fendt, M. and Fanselow, M.S. (1999). The neuroanatomical and neurochemical basis of conditioned fear. Neurosci. Biobehav. Rev. 23, 743–760.

    • Crossref
    • Export Citation
  • Garcia, R., Vouimba, R.M., Baudry, M., and Thompson, R.F. (1999). The amygdala modulates prefrontal cortex activity relative to conditioned fear. Nature 402, 294–296.

    • Crossref
    • Export Citation
  • Geller, I. and Seifter, J. (1960). The effects of meprobamate, barbiturates, d-amphetamine, and promazine on experimentally-induced conflict in the rat. Psychopharmacology 1, 482.

    • Crossref
    • Export Citation
  • Geller, I., Kulak, J.T. Jr., and Seifter, J. (1962). The effects of chlordiazepoxide and chlorpromazine on a punishment discrimination. Psychopharmacologia 3, 374–385.

    • Crossref
    • PubMed
    • Export Citation
  • Gewirtz, J.C., McNish, K.A., and Davis, M. (2000). Is the hippocampus necessary for contextual fear conditioning? Behav. Brain Res. 110, 83–95.

  • Glanzman, D.L., Mackey, S.L., Hawkins, R.D., and Dyke, A.M. (1989). Depletion of serotonin in the nervous system of Aplysia reduces the behavioral enhancement of gill withdrawal as well as the heterosynaptic facilitation produced by tail shock. J. Neurosci. 9, 4200–4213.

    • Crossref
    • Export Citation
  • Goldstein, L.E., Rasmusson, A.M., Bunney, B.S., and Roth, R.H. (1996). Role of the amygdala in the coordination of behavioral, neuroendocrine, and prefrontal cortical monoamine responses to psychological stress in the rat. J Neurosci. 16, 4787–4798.

    • Crossref
    • PubMed
    • Export Citation
  • Gonzales, C. and Chesselet, M.F. (1990). Amygdalonigral pathway: an anterograde study in the rat with phaseolus vulgaris leucoagglutinin (PHA-L). J. Comp. Neurol. 297, 182–200.

    • Crossref
    • Export Citation
  • Goosens, K.A. and Maren, S (2001). Contextual and auditory fear conditioning are mediated by the lateral, basal, and central amygdaloid nuclei in rats. Learn. Mem. 8, 148–155.

    • PubMed
    • Export Citation
  • Green, S. and Hodges, H. (1991). Animal models of anxiety. In: Behavioral models in Psychopharmacology, P. Willner, ed. (Cambridge: Cambridge University Press), pp. 21–49.

  • Griebel, G. (1995). 5-Hydroxytryptamine-interacting drugs in animal models of anxiety disorders: more than 30 years of research. Pharmacol. Ther. 65, 319–395.

    • Crossref
    • Export Citation
  • Grillon, C., Morgan, C.A., Davis, M., and Southwick, S.M. (1998). Effects of experimental context and explicit threat cues on acoustic startle in Vietnam veterans with posttraumatic stress disorder. Biol. Psychiatry 44, 1027–1036.

    • Crossref
    • PubMed
    • Export Citation
  • Gupta, R.R., Sen, S., Diepenhorst, L.L., Rudick, C.N., and Maren, S. (2001). Estrogen modulates sexually dimorphic contextual fear conditioning and hippocampal long-term potentiation (LTP) in rats. Brain Res. 888, 356–365.

    • Crossref
    • Export Citation
  • Hajós-Korcsok, E., Robinson, D.D., Yu, J.H., Fitch, C.S., Walker, E., and Merchant, K.M. (2003). Rapid habituation of hippocampal serotonin and norepinephrine release and anxiety-related behaviors, but not plasma corticosterone levels, to repeated foot shock stress in rats. Pharmacol. Biochem. Behav. 74, 609–616.

    • Crossref
    • Export Citation
  • Halladay, L.R., Zelikowsky, M., Blair, H.T., and Fanselow, M.S. (2012). Reinstatement of extinguished fear by an unextinguished conditional stimulus. Front. Behav. Neurosci. 4, 6–18.

    • Crossref
    • Export Citation
  • Harvey, A.G., Jones, C., and Schmidt, D.A. (2003). Sleep and posttraumatic stress disorder: a review. Clin. Psychol. Rev. 23, 377–407.

    • Crossref
    • Export Citation
  • Hascoët, M. and Bourin, M (1997). Anticonflict effect of alpidem as compared with the benzodiazepine alprazolam in rats. Pharmacol. Biochem. Behav. 56, 317–324.

    • Crossref
    • Export Citation
  • Hascoët, M., Bourin, M., Todd, K.G., and Couetoux du, T.A. (1994). Anti-conflict effect of 5HT-1A agonists in rats: a new model for evaluating anxiolytic-like activity. J. Psychopharmacol. 8, 227–237.

  • Hawk, L.W., Dougall, A.L., Ursano, R.J., and Baum, A. (2000). Urinary catecholamines and recent onset posttraumatic stress disorder after motor vehicle accidents, Psychosom. Med. 62, 423–434.

  • Heinsbroek, R.P., Feenstra, M.G., Boon, P., Van Haaren, F., and Van de Poll, N.E. (1988). Sex differences in passive avoidance depend on the integrity of the central serotonergic system. Pharmacol. Biochem. Behav. 31, 499–503.

    • Crossref
    • Export Citation
  • Hijzen, T.H., Houtzager, S.W., Joordens, R.J., Olivier, B., and Slangen, J.L. (1995). Predictive validity of the potentiated startle response as a behavioral model for anxiolytic drugs. Psychopharmacology (Berl). 118, 150–154.

    • Crossref
    • Export Citation
  • Hikosaka, O. (2010). The habenula: from stress evasion to value-based decision-making. Nature Rev. Neurosci. 11, 503–513.

    • Crossref
    • Export Citation
  • Hitchcock, J.M. and Davis, M. (1991). Efferent pathway of the amygdala involved in conditioned fear as measured with the fear-potentiated startle paradigm. Behav. Neurosci. 105, 826–842.

    • Crossref
    • Export Citation
  • Hoffman, H.S. and Fleshler, M. (1962). A relay sequencing device for scrambling grid shock. J. Exp. Anal. Behav. 5, 329–330.

    • Crossref
    • Export Citation
  • Hopkins, D.A. and Holstege, G. (1978) Amygdaloid projections to the mesencephalon, pons and medulla oblongata in the cat. Exp. Brain Res. 32, 529–547.

    • Crossref
    • Export Citation
  • Huang, Y.H., Cheng, C.Y., Hong, C.J., and Tsai, S.J., (2004). Expression of c-Fos-like immunoreactivity in the brain of mice with learned helplessness. Neurosci. Lett. 363, 280–283.

    • Crossref
    • Export Citation
  • Ilango, A., Shumake, J., Wetzel, W., Scheich, H., and Ohl, F.W. (2012). The role of dopamine in the context of aversive stimuli with particular reference to acoustically signaled avoidance learning. Front. Neurosci. 6, 132.

    • Crossref
    • Export Citation
  • Jelen, P., Soltysik, S., and Zagrodzka, J. (2003). 22-kHz ultrasonic vocalization in rats as an index of anxiety but not fear: behavioral and pharmacological modulation of affective state. Behav. Brain Res. 141, 63–72.

    • Crossref
    • Export Citation
  • Jenck, F., Moreau, J.L., and Martin, J.R. (1995). Dorsal periaqueductal gray-induced aversion as a simulation of panic anxiety: elements of face and predictive validity. Psychiatry Res. 57, 181–191.

    • Crossref
    • PubMed
    • Export Citation
  • Ji, H. and Shepard, P.D. (2007). Lateral habenula stimulation inhibits rat midbrain dopamine neurons through a GABA(A) receptor-mediated mechanism. J. Neurosci. 27, 6923–6930.

    • Crossref
    • Export Citation
  • Joordens, R.J., Hijzen, T.H., Peeters, B.W., and Olivier, B. (1996). Fear-potentiated startle response is remarkably similar in two laboratories. Psychopharmacology (Berl.) 126, 104–109.

    • Crossref
    • PubMed
    • Export Citation
  • Kaltwasser, M.T. (1991). Acoustic startle induced ultrasonic vocalization in the rat: a novel animal model of anxiety? Behav. Brain Res. 43, 133–137.

    • Crossref
    • Export Citation
  • Kassai, F. and Gyertyán, I. (2012). Shock priming enhances the efficacy of SSRIs in the foot shock-induced ultrasonic vocalization test. Prog. Neuropsychopharmacol. Biol. Psychiatry 36, 128–135.

    • Crossref
    • PubMed
    • Export Citation
  • Kim, J.J. and Jung, M.W. (2006). Neural circuits and mechanisms involved in Pavlovian fear conditioning: a critical review. Neurosci. Biobehav. Rev. 30, 188–202.

    • Crossref
    • Export Citation
  • Kimble, G.A. (1955). Shock intensity and avoidance learning. J. Comp. Physiol. Psychol. 48, 281–284.

    • Crossref
    • Export Citation
  • Koolhaas, J.M., Hermann, P.M., Kemperman, C., Bohus, B., Van denHoofdakker, R.H., and Beersma, D.G.M. (1990). Single social defeat in male rats induces a gradual but long lasting behavioural change: a model of depression? Neurosci. Res. Commun. 7, 35–41.

  • Kornstein, S.G., Schatzberg, A.F., Thase, M.E., Yonkers, K.A., McCullough, J.P., Keitner, G.I., Gelenberg, A.J., Davis, S.M., Harrison, W.M., and Keller, M.B. (2000). Gender differences in treatment response to sertraline versus imipramine in chronic depression. Am. J. Psychiatry 157, 1445–1452.

    • Crossref
    • Export Citation
  • Kuribara, H. and Asahi, T. (1997). Assessment of the anxiolytic and amnesic effects of three benzodiazepines, diazepam, alprazolam and triazolam, by conflict and non-matching to sample tests in mice. Nihon. Shinkei. Seishin. Yakurigaku. Zasshi 17, 1–6.

    • PubMed
    • Export Citation
  • Lamberty, Y., Falter, U., Gower, A.J., and Klitgaard, H. (2003). Anxiolytic profile of the antiepileptic drug levetiracetam in the Vogel conflict test in the rat. Eur. J. Pharmacol. 469, 97–102.

    • Crossref
    • Export Citation
  • Lecourtier, L. and Kelly, P.H. (2007). A conductor hidden in the orchestra? Role of the habenular complex in monoamine transmission and cognition. Neurosci. Biobehav. Rev. 31, 658–672.

    • Crossref
    • Export Citation
  • LeDoux, J.E. (1992). Brain mechanisms of emotion and emotional learning. Curr. Opin. Neurobiol. 2, 191–197.

    • Crossref
    • Export Citation
  • LeDoux, J.E., Iwata, J., Cicchetti, P., and Reis, D.J. (1988). Different projections of the central amygdaloid nucleus mediate autonomic and behavioral correlates of conditioned fear. J. Neurosci. 8, 2517–2529.

  • Levine, S. (1966). UCS intensity and avoidance learning. J. Exp. Psychol. 71, 163–164.

    • Crossref
    • Export Citation
  • Li, B., Piriz, J., Mirrione, M., Chung, C., Proulx, C.D., Schulz, D., Henn, F., and Malinow, R. (2011). Synaptic potentiation onto habenula neurons in the learned helplessness model of depression. Nature 470, 535–539.

    • Crossref
    • Export Citation
  • Li, Z., Zhou, Q., Li, L., Mao, R., Wang, M., Peng, W., Dong, Z., Xu, L., and Cao, J. (2005). Effects of unconditioned and conditioned aversive stimuli in an intense fear conditioning paradigm on synaptic plasticity in the hippocampal CA1 area in vivo. Hippocampus 15, 815–824.

    • Crossref
    • Export Citation
  • Liberzon, I., Taylor, S.F., Amdur, R., Jung, T.D., Chamberlain, K.R., Minoshima, S., Koeppe R.A., and Fig, L.M. (1999). Brain activation in PTSD in response to trauma-related stimuli. Biol. Psychiatry 45, 817–826.

    • Crossref
    • Export Citation
  • Lindvall, O. and Bjorklund, A. (1984). General organization of cortical monoamine systems in Monoamine innervation of the cerebral cortex. In: L. Descarries, T.R. Reader, and H.H. Jasper, eds. (New York: Liss), pp. 9–40.

  • Loiseau, F., Le Bihan, C., Hamon, M., and Thiébot, M.H. (2003). Distinct effects of diazepam and NK1 receptor antagonists in two conflict procedures in rats. Behav. Pharmacol. 14, 447–455.

  • Louvart, H., Maccari, S., Lesage, J., Leonhardt, M., Dickes- Coopman, A., and Darnaudery, M., (2006). Effects of a single foot shock followed by situational reminders on HPA axis and behaviour in the aversive context in male and female rats. Psychoneuroendocrinol. 31, 92–99.

    • Crossref
    • Export Citation
  • Louvart, H., Maccari, S., Lesage, J., Léonhardt, M., Dickes-Coopman, A., and Darnaudéry, M. (2005a). Effects of a single footshock followed by situational reminders on HPA axis and behaviour in the aversive context in male and female rats. Psychoneuroendocrinol. 31, 92–99.

    • Crossref
    • PubMed
    • Export Citation
  • Louvart, H., Maccari, S., Ducrocq, F., Thomas, P., and Darnaudery, M., (2005b). Long-term behavioural alterations in female rats after a single intense footshock followed by situational reminders. Psychoneuroendocrinol. 30, 316–324.

    • Crossref
    • PubMed
    • Export Citation
  • Maier, S.F. and Watkins, L.R. (2005). Stressor controllability and learned helplessness: the roles of the dorsal raphe nucleus, serotonin, and corticotropin-releasing factor. Neurosci. Biobehav. Rev. 29, 829–841.

    • Crossref
    • Export Citation
  • Maren, S., De Oca, B., and Fanselow, M.S. (1994). Sex differences in hippocampal long-term potentiation (LTP) and Pavlovian fear conditioning in rats: positive correlation between LTP and contextual learning. Brain Res. 661, 25–34.

    • Crossref
    • Export Citation
  • Maren, S. (2001). Neurobiology of Pavlovian fear conditioning. Annu. Rev. Neurosci. 24, 897–931.

    • Crossref
    • Export Citation
  • Marsden, W.N. (2013). Synaptic plasticity in depression: molecular, cellular and functional correlates. Prog. Neuropsychopharmacol. Biol. Psychiatry 43, 168–184.

    • Crossref
    • PubMed
    • Export Citation
  • Martin, J.R., Moreau, J.L., Jenck, F., and Cumin, R. (1993). Acute and chronic administration of buspirone fails to yield anxiolytic-like effects in a mouse operant punishment paradigm. Pharmacol. Biochem. Behav. 46, 905–910.

    • Crossref
    • Export Citation
  • Mason, J.W. (1959). Plasma 17-hydroxycorticosteroid levels during electrical stimulation of the amygdaloid complex in conscious monkeys. Am. J. Physiol. 196, 44–48.

  • Masterson, F.A. (1965). Equal aversion functions as predictors of instrumental responding. Unpublished doctoral dissertation. Princeton University.

  • Masterson, F.A. (1969). Escape from noise. Psychol. Rep. 24, 484–486.

  • Masterson, F.A. (1970). Is termination of a warning signal an effective reward for rats? J. Comp. Phys. Psych. 72, 471–475.

    • Crossref
    • Export Citation
  • Masterson, F.A. (1981). Suppression of the rat’s locomotor activity atlow intensities of electric foot shock. Behav. Res. Methods Instrumentation 13, 31–36.

    • Crossref
    • Export Citation
  • Masterson, F.A. and Campbell, B.A. (1972). Techniques of electric shock motivation. In: Methods in psychobiology, Vol. 2, R.D. Myers, ed. (New York: Academic Press).

  • Matsumoto, M. and Hikosaka, O (2007). Lateral habenula as a source of negative reward signals in dopamine neurons. Nature 447, 1111–1115.

    • Crossref
    • Export Citation
  • McDannald, M.A. (2010). Contributions of the amygdala central nucleus and ventrolateral periaqueductal grey to freezing and instrumental suppression in Pavlovian fear conditioning. Behav Brain Res. 211, 111–117.

    • Crossref
    • Export Citation
  • McKinney, W.T. (1988). Model of Mental Disorders: A New Comparative Psychiatry. (New York: Plenum).

    • Crossref
    • Export Citation
  • Mikics, E, Baranyi, J., and Haller, J. (2008). Rats exposed to traumatic stress bury unfamiliar objects–a novel measure of hyper-vigilance in PTSD models? Physiol. Behav. 94, 341–348.

  • Millan, M.J. (1999). The induction of pain: an integrative review. Progr. Neurobiol. 57, 1–164.

    • Crossref
    • Export Citation
  • Mirrione, M.M., Schulz, D., Lapidus, K.A., Zhang, S., Goodman, W., and Henn, F.A. (2014). Increased metabolic activity in the septum and habenula during stress is linked to subsequent expression of learned helplessness behavior. Front. Hum. Neurosci. 8, 29.

    • Crossref
    • Export Citation
  • Molewijk, H.E., van der Poel, A.M., Mos, J., van, der., Heyden, J.A., and Olivier, B. (1995). Conditioned ultrasonic distress vocalizations in adult male rats as a behavioural paradigm for screening anti-panic drugs. Psychopharmacology (Berl). 117, 32–40.

    • Crossref
    • Export Citation
  • Molina-Hernández, M. and Téllez-Alcántara, N.P. (2001). Estrus variation in anticonflict effects of midazolam microinjected into septal nuclei in female Wistar rats. Pharmacol. Biochem. Behav. 68, 531–537.

    • Crossref
    • Export Citation
  • Molina-Hernández, M., Téllez-Alcántara, N.P., Olivera-López, J.I., and Jaramillo, M.T. (2013). Estrous cycle variation in anxiolytic-like effects of topiramate in Wistar rats in two animal models of anxiety-like behavior. Pharmacol. Biochem. Behav. 103, 631–636.

    • Crossref
    • Export Citation
  • Nelson, J.C. and Charney, D.S. (1981). The symptoms of major depressive illness. Am. J. Psychiatry 138, 1–13.

  • O’Kelly, L.E. and Steckle, L.C. (1939). A note on longen during emotional responses in the rat. J. Psychol. 8, 125–131.

  • Overmier, J.B. and Seligman, M.E. (1967). Effects of inescapable shock upon subsequent escape and avoidance responding. J. Comp. Physiol. Psychol. 63, 28–33.

    • Crossref
    • Export Citation
  • Palma, B.D., Suchecki, D., and Tufik, S. (2000). Differential effects of acute cold and footshock on the sleep of rats. Brain Res. 861, 97–104.

    • Crossref
    • Export Citation
  • Paterson, N.E. and Hanania, T. (2010). The modified Geller-Seifter test in rats was insensitive to GABA(B) receptor positive modulation or blockade, or 5-HT1A receptor activation. Behav. Brain Res. 208, 258–264.

    • Crossref
    • Export Citation
  • Pavlov, P.I. (1927). Conditioned reflexes: An investigation of the physiological activity of the cerebral cortex. Ann. Neurosci. 17, 136–141.

  • Pawlyk, A.C., Jha S.K., Brennan, F.X., Morrison, A.R., and Ross, R.J. (2005). A rodent model of sleep disturbances in posttraumatic stress disorder: the role of context after fear conditioning. Biol. Psychiatry 57, 268–277.

    • Crossref
    • PubMed
    • Export Citation
  • Payne, J.D., Jackson, E.D., Hoscheidt, S., Ryan, L., Jacobs, W.J., and Nadel, L. (2007). Stress administered prior to encoding impairs neutral but enhances emotional long-term episodic memories. Learn. Mem. 14, 861–868.

    • Crossref
    • PubMed
    • Export Citation
  • Pericic, D. and Pivac, N (1995). Sex differences in conflict behaviour and in plasma corticosterone levels. J. Neural. Transm. Gen. Sect. 101, 213–221.

    • Crossref
    • Export Citation
  • Petersen, E.N. and Lassen, J.B. (1981). A water lick conflict paradigm using drug experienced rats. Psychopharmacol. 75, 236–239.

    • Crossref
    • PubMed
    • Export Citation
  • Phelps, E.A., O’Connor, K.J., Gatenby, J.C., Gore, J.C., Grillon, C., and Davis, M. (2001). Activation of the left amygdala to a cognitive representation of fear. Nat. Neurosci. 4, 437–441.

    • Crossref
    • PubMed
    • Export Citation
  • Philbert, J., Pichat, P., Beeské, S., Decobert, M., Belzung, C., and Griebel, G. (2011). Acute inescapable stress exposure induces long-term sleep disturbances and avoidance behavior: a mouse model of post-traumatic stress disorder (PTSD). Behav. Brain Res. 221, 149–154.

    • Crossref
    • Export Citation
  • Philbert, J., Pichat, P., Palme, R., Belzung, C., and Griebel, G. (2012). The CRF1 receptor antagonist SSR125543 attenuates long-term cognitive deficit induced by acute inescapable stress in mice, independently from the hypothalamic pituitary adrenal axis. Pharmacol. Biochem. Behav. 102, 415–422.

    • Crossref
    • Export Citation
  • Pissiota, A., Frans, O., Fernandez, M., von Knorring, L., Fischer, H., and Fredrikson, M. (2002). Neurofunctional correlates of posttraumatic stress disorder: a PET symptom provocation study. Eur. Arch. Psychiatry Clin. Neurosci. 252, 68–75.

    • Crossref
    • Export Citation
  • Plaznik, A., Jessa, M., Bidzinski, A., and Nazar, M. (1994). The effect of serotonin depletion and intra-hippocampal midazolam on rat behavior in the Vogel conflict test. Eur. J. Pharmacol. 257, 293–296.

    • Crossref
    • Export Citation
  • Pollard, G.T. and Howard, J.C.L., (1989). Effects of drugs on punished behaviour: preclinical test for anxiolytics. Pharmacol. Ther. 45, 403–424.

  • Polta, S.A., Fenzl, T., Jakubcakova, V., Kimura, M., Yassouridis, A., and Wotjak, C.T. (2013). Prognostic and symptomatic aspects of rapid eye movement sleep in a mouse model of posttraumatic stress disorder. Front. Behav. Neurosci. 7, 60.

    • Crossref
    • Export Citation
  • Prus, A.J., Hillhouse, T.M., and LaCrosse, A.L. (2014). Acute, but not repeated, administration of the neurotensin NTS1 receptor agonist PD149163 decreases conditioned footshock-induced ultrasonic vocalizations in rats. Prog. Neuropsychopharmacol. Biol. Psychiatry 49, 78–84.

    • Crossref
    • Export Citation
  • Pryce, C.R., Lehmann, J., and Feldon, J. (1999). Effect of sex on fear conditioning is similar for context and discrete CS in Wistar, Lewis and Fischer rat strains. Pharmacol. Biochem. Behav. 64, 753–759.

    • Crossref
    • Export Citation
  • Pynoos, R.S., Ritzmann, R.F., Steinberg, A.M., Goenjian, A., and Prisecaru, I. (1996). A behavioral animal model of posttraumatic stress disorder featuring repeated exposure to situational reminders. Biol. Psychiatry. 39, 129–134.

    • Crossref
    • Export Citation
  • Raps, C.S., Reinhard, K.E., and Seligman, M.E. (1980). Reversal of cognitive and affective deficits associated with depression and learned helplessness by mood elevation in patients. J. Abnorm. Psychol. 89, 342–349.

    • Crossref
    • Export Citation
  • Richter, C.P. (1950). Domestication of the Norway rat and its implications for the problem of stress. Assoc. Res. in Nerv and ment dis. Proc. 29, 19.

  • Richter, S.H., Sartorius, A., Gass, P., and Vollmayr, B. (2014). A matter of timing: harm reduction in learned helplessness. Behav. Brain Funct. 10, 41.

    • Crossref
    • Export Citation
  • Richter-Levin, G. (1998). Acute and long-term behavioral correlates of underwater trauma–potential relevance to stress and post-stress syndromes. Psychiatry Res. 79, 73–83.

    • Crossref
    • Export Citation
  • Risbrough, V.B., Brodkin, J.D., and Geyer, M.A. (2003). GABA-A and 5-HT1A receptor agonists block expression of fear-potentiated startle in mice. Neuropsychopharmacol. 28, 654–663.

    • Crossref
    • Export Citation
  • Roberts, L.H. (1975). The rodent ultrasound production mechanism. Ultrasonics 13, 83–88.

    • Crossref
    • PubMed
    • Export Citation
  • Roozendaal, B., Koolhaas, J.M., and Bohus, B. (1991). Attenuated cardiovascular, endocrine and behavioral response after a single footshock in central amygdaloid lesioned male rats. Physiol. Behav. 50, 771–775.

    • Crossref
    • Export Citation
  • Rosen, J.B., Hitchcock, J.M., Miserendino, M.J., Falls, W.A., Campeau, S., and Davis, M. (1992). Lesions of the perirhinal cortex but not of the frontal, medial prefrontal, visual, or insular cortex block fear-potentiated startle using a visual conditioned stimulus. J. Neurosci. 12, 4624–4633.

    • Crossref
    • Export Citation
  • Sánchez, C. (1993). Effect of serotonergic drugs on footshock-induced ultrasonic vocalization in adult male rats. Behav. Pharmacol. 4, 269–277.

    • Crossref
    • Export Citation
  • Sánchez, C. (2003). Stress-induced vocalisation in adult animals. A valid model of anxiety? Eur. J. Pharmacol. 463, 133–143.

  • Sánchez, C., Bergqvist, P.B.F., Brennum, L.T., Gupta, S., Hogg, S., Larsen, A.K., and Wiborg, O. (2003). Escitalopram, the S-(+)-enantiomer of citalopram, is an extremely selective serotonin reuptake inhibitor with potent antidepressant and anxiolytic activities. Psychopharmacology 167, 353–362.

    • Crossref
    • Export Citation
  • Sánchez, C. and Meier, E. (1997). Behavioral profiles of SSRIs in animal models of depression, anxiety and aggression. Are they all alike? Psychopharmacology (Berl.) 129, 197–205.

    • Crossref
    • Export Citation
  • Sanchis-Segura, C., Spanagel, R., Henn, F.A., and Vollmayr, B. (2005). Reduced sensitivity to sucrose in rats bred for helplessness: a study using the matching law. Behav. Pharmacol. 16, 267–270.

    • Crossref
    • Export Citation
  • Santha, P., Pákáski, M., Fodor, E.K., Fazekas, Ö C., Kálmán S, Kálmán J., Jr., Janka, Z., SZabó, G., and Kálmán J. (2013). Cytoskeletal Protein Translation and Expression in the Rat Brain Are Stressor-Dependent and Region-Specific. PLoS One 8, e73504.

    • Crossref
    • PubMed
    • Export Citation
  • Sartorius, A., Kiening, K.L., Kirsch, P., von Gall, C.C., Haberkorn, U., Unterberg, A.W., Henn, F.A., and Meyer-Lindenberg, A. (2010). Remission of major depression under deep brain stimulation of the lateral habenula in a therapy-refractory patient. Biol. Psychiatry 67, e9–e11.

    • Crossref
    • Export Citation
  • Schefke, D.M., Fontana, D.J., and Commissaris, R.L. (1989). Anti-conflict efficacy of buspirone following acute versus chronic treatment. Psychopharmacology (Berl). 99, 427–429.

    • Crossref
    • Export Citation
  • Schreiber, R. and De Vry, J. (1993). 5-HT1A receptor ligands in animal models of anxiety, impulsivity and depression: multiple mechanisms of action? Prog. Neuro-Psychopharmacol. Biol. Psychiatry 17, 87–104.

    • Crossref
    • Export Citation
  • Sekino, Y., Kojima, N., and Shirao, T. (2007). Role of actin cytoskeleton in dendritic spine morphogenesis. Neurochem. Int. 51, 92–104.

    • Crossref
    • Export Citation
  • Seligman, M.E. and Maier, S.F. (1967). Failure to escape traumatic shock. J. Exp. Psychol. 74, 1–9.

    • Crossref
    • Export Citation
  • Seligman, M.E., Rosellini, R.A., and Kozak, M.J. (1975). Learned helplessness in the rat: time course, immunization, and reversibility. J. Comp. Physiol. Psychol. 88, 542–547.

    • Crossref
    • Export Citation
  • Sherman, A.D., Allers, G.L., Petty, F., and Henn, F.A. (1979). A neuropharmacologically-relevant animal model of depression. Neuropharmacol. 18, 891–893.

    • Crossref
    • PubMed
    • Export Citation
  • Sherman, A.D., Sacquitne, J.L., and Petty, F. (1982). Specificity of the learned helplessness model of depression. Pharmacol. Biochem. Behav. 16, 449–454.

    • Crossref
    • Export Citation
  • Shimizu, H., Kumasaka, Y., Tanaka, H., Hirose, A., and Nakamura, M. (1992). Anticonflict action of tandospirone in a modified Geller–Seifter conflict test in rats. Jpn. J. Pharmacol. 58, 283–289.

    • Crossref
    • Export Citation
  • Shimizu, K., Kikuchi, A., Wakizono, T., Suzuki, G., Toda, H., Sawamura, T., Nibuya, M., Takahashi, Y., and Soichiro, N. (2006). An animal model of posttraumatic stress disorder in rats using a shuttle box. Nihon Shinkei Seishin Yakurigaku Zasshi 26, 93–99.

    • PubMed
    • Export Citation
  • Shimizu, K., Sawamura, T., Nibuya, M., Nakai, K., Takahashi, Y., and Nomura, S. (2004). An animal model of posttraumatic stress disorder and its validity: effect of paroxetine on a PTSD model in rats]. Nihon. Shinkei. Seishin. Yakurigaku Zasshi 24, 283–290.

    • PubMed
    • Export Citation
  • Shin, L.M., Shin, P.S., Heckers, S., Krangel, T.S., Macklin, M.L., Orr, S.P., Lasko, N., Segal, E., Makris, N., Richert, K., et al. (2004). Hippocampal function in posttraumatic stress disorder. Hippocampus 14, 292–300.

    • Crossref
    • PubMed
    • Export Citation
  • Shors, T.J., Seib, T.B., Levine, S., and Thompson, R.F. (1989). Inescapable versus escapable shock modulates long-term potentiation in the rat hippocampus. Science 244, 224–226.

    • Crossref
    • Export Citation
  • Shumake, J., Ilango, A., Scheich, H., Wetzel, W., and Ohl, F.W. (2010). Differential neuromodulation of acquisition and retrieval of avoidance learning by the lateral habenula and ventral tegmental area. J. Neurosci. 30, 5876–5883.

    • Crossref
    • Export Citation
  • Siegmund, A. and Wotjak, C.T. (2007). A mouse model of posttraumatic stress disorder that distinguishes between conditioned and sensitised fear. J. Psychiatr. Res. 41, 848–860.

    • Crossref
    • Export Citation
  • Silva, L.B. and Nobre, M.J. (2014). Impaired fear inhibitory properties of GABA(A) and μ opioid receptors of the dorsal periaqueductal grey in alcohol-withdrawn rats. Acta Neurobiol. Exp. (Wars). 74, 54–66.

  • Sousa, N. and Almeida, O.F. (2012). Disconnection and reconnection: the morphological basis of (mal)adaptation to stress. Trends Neurosci. 35, 742–751.

    • Crossref
    • PubMed
    • Export Citation
  • Spoormaker, V.I. and Montgomery, P. (2008). Disturbed sleep in post-traumatic stress disorder: secondary symptom or core feature? Sleep Med. Rev. 12, 169–184.

    • Crossref
    • PubMed
    • Export Citation
  • Steciuk, M., Kram, M., Kramer, G.L., and Petty, F. (1999). Decrease in stress-induced c-Fos-like immunoreactivity in the lateral septal nucleus of learned helpless rats. Brain Res. 822, 256–259.

    • Crossref
    • Export Citation
  • Steenbergen, H.L., Heinsbroek, R.P., Van Hest, A., and Van de Poll, N.E. (1990). Sex-dependent effects of inescapable shock administration on shuttlebox-escape performance and elevated plus-maze behavior. Physiol. Behav. 48, 571–576.

    • Crossref
    • Export Citation
  • Tanaka, M. (1999). Emotional stress and characteristics of brain noradrenaline release in the rat. Ind. Health 37, 143–156.

    • Crossref
    • Export Citation
  • Tonoue, T., Ashida, Y., Makino, H., and Hata, H. (1986). Inhibition of shock-elicited ultrasonic vocalization by opioid peptides in the rat: a psychotropic effect. Psychoneuroendocrinol. 11, 177–184.

    • Crossref
    • Export Citation
  • Treit, D. (1985). Animal models for the study of anti-anxiety agents: a review. Neurosci. Biobehav. Rev. 9, 203–222.

    • Crossref
    • Export Citation
  • Umezu, T. (2000). Behavioral effects of plant-derived essential oils in the Geller type conflict test in mice. Jpn. J. Pharmacol. 83, 150–153.

    • Crossref
    • Export Citation
  • van de Kar, L.D., Piechowski, R.A., Rittenhouse, P.A., and Grey, T.S. (1991). Amygdaloid lesions: differential effect on conditioned stress and immobilization-induced increases in corticosterone and renin secretion. Neuroendocrinol. 54, 89–95.

    • Crossref
    • Export Citation
  • Van den Berg, C.L., Lamberts, R.R., Wolterink, G., Wiegant, V.M., and Van Ree, J.M. (1998). Emotional and footshock stimuli induce differential long-lasting behavioural effects in rats; involvement of opioids. Brain Res. 799, 6–15.

    • Crossref
    • Export Citation
  • Vazdarjanova, A. and McGaugh, J.L. (1998). Basolateral amygdala is not critical for cognitive memory of contextual fear conditioning. Proc. Natl. Acad. Sci. USA 95, 15003–15007.

    • Crossref
    • Export Citation
  • Vogel, J.R., Beer, B., and Clody, D.E. (1971). A simple and reliable conflict procedure for testing anti-anxiety agents. Psychopharmacologia 21, 1–7.

    • Crossref
    • PubMed
    • Export Citation
  • Vollmayr, B. and Henn, F.A. (2001). Learned helplessness in the rat: improvements in validity and reliability. Brain Res. Brain Res. Protoc. 8, 1–7.

    • Crossref
    • PubMed
    • Export Citation
  • Vsan Haaren, F., van Hest, A., and Heinsbroek, R.P. (1990). Behavioral differences between male and female rats: effects of gonadal hormones on learning and memory. Neurosci. Biobehav. Rev. Spring 14, 23–33.

    • Crossref
    • Export Citation
  • Walker, D.L., Toufexis, D.J., and Davis, M. (2003). Role of the bed nucleus of the stria terminalis versus the amygdala in fear, stress, and anxiety. Eur. J. Pharmacol. 463, 199–216.

    • Crossref
    • Export Citation
  • Wang, B., Luo, F., Zhang, W., and Han, J. (2000). Stress or drug priming induces reinstatment of extinguished conditioned place preference. Neuroreport 11, 2781–2784.

    • Crossref
    • Export Citation
  • Wang, W.F., Lei, Y.P., Tseng, T., Hsu, W.Y., Wang, C.F., Hsu, C.C., and Ho, Y.J. (2007). Effects of apomorphine on the expression of learned helplessness behavior. Chin. J. Physiol. 50, 63–68.

  • Weinstock, M., Razin, M., Schorer-Apelbaum, D., Men, D., and McCarty, R. (1998). Gender differences in sympathoadrenal activity in rats at rest and in response to footshock stress. Int. J. Dev. Neurosci. 16, 289–295.

    • Crossref
    • PubMed
    • Export Citation
  • Weiss, J.M. and Simson, P.G. (1986). Depression in an animal model: focus on the locus ceruleus. Ciba Found. Symp. 123, 191–215.

  • Willner, P. (1986). Validation criteria for animal models of human mental disorders: learned helplessness as a paradigm case. Prog. Neuropsychopharmacol. Biol. Psychiatry 10, 677–690.

    • PubMed
    • Export Citation
  • Winter, C., Vollmayr, B., Djodari-Irani, A., Klein, J., and Sartorius, A. (2011). Pharmacological inhibition of the lateral habenula improves depressive-like behavior in an animal model of treatment resistant depression. Behav. Brain Res. 216, 463–465.

    • Crossref
    • Export Citation
  • Yehuda, R., Flory, J.D., Pratchett, L.C., Buxbaum, J., Ising, M., and Holsboer, F. (2010). Putative biological mechanisms for the association between early life adversity and the subsequent development of PTSD. Psychopharmacology (Berl.) 212, 405–417.

    • Crossref
    • Export Citation
  • Yehuda, R., McFarlane, A.C., and Shalev, A.Y. (1998). Predicting the development of posttraumatic stress disorder from the acute response to a traumatic event. Biol. Psychiatry 44, 1305–1313.

    • Crossref
    • PubMed
    • Export Citation
  • Yerkes, R.M. and Dodson, J.D. (1908). The relation of strength of stimulus to rapidity of habit-formation. J. Comp. Neurol. Psychol. 18, 459–482.

    • Crossref
    • Export Citation
Purchase article
Get instant unlimited access to the article.
$42.00
Log in
Already have access? Please log in.


or
Log in with your institution

Journal + Issues

Reviews in the Neurosciences provides a forum for reviews, critical evaluations and theoretical treatment of selective topics in the neurosciences. The journal provides an authoritative reference work for those interested in the structure and functions of the nervous system at all levels of analysis, including the genetic, molecular, cellular, behavioral, cognitive and clinical neurosciences.

Search