Treatment-resistant schizophrenia: focus on the transsulfuration pathway

Thomas Berry 1 , Eid Abohamza 2 ,  and Ahmed A. Moustafa 1 , 3
  • 1 School of Social Sciences and Psychology, Western Sydney University, Sydney 2751, New South Wales, Australia
  • 2 Department of Social Sciences, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar
  • 3 Marcs Institute for Brain and Behaviour, Western Sydney University, Sydney 2751, New South Wales, Australia
Thomas Berry
  • School of Social Sciences and Psychology, Western Sydney University, Sydney 2751, New South Wales, Australia
  • Search for other articles:
  • degruyter.comGoogle Scholar
, Eid Abohamza
  • Department of Social Sciences, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar
  • Search for other articles:
  • degruyter.comGoogle Scholar
and Ahmed A. Moustafa
  • Corresponding author
  • School of Social Sciences and Psychology, Western Sydney University, Sydney 2751, New South Wales, Australia
  • Marcs Institute for Brain and Behaviour, Western Sydney University, Sydney 2751, New South Wales, Australia
  • Email
  • Search for other articles:
  • degruyter.comGoogle Scholar

Abstract

Treatment-resistant schizophrenia (TRS) is a severe form of schizophrenia. The severity of illness is positively related to homocysteine levels, with high homocysteine levels due to the low activity of the transsulfuration pathway, which metabolizes homocysteine in synthesizing L-cysteine. Glutathione levels are low in schizophrenia, which indicates shortages of L-cysteine and low activity of the transsulfuration pathway. Hydrogen sulfide (H2S) levels are low in schizophrenia. H2S is synthesized by cystathionine β-synthase and cystathionine γ-lyase, which are the two enzymes in the transsulfuration pathway. Iron-sulfur proteins obtain sulfur from L-cysteine. The oxidative phosphorylation (OXPHOS) pathway has various iron-sulfur proteins. With low levels of L-cysteine, iron-sulfur cluster formation will be dysregulated leading to deficits in OXPHOS in schizophrenia. Molybdenum cofactor (MoCo) synthesis requires sulfur, which is obtained from L-cysteine. With low levels of MoCo synthesis, molybdenum-dependent sulfite oxidase (SUOX) will not be synthesized at appropriate levels. SUOX detoxifies sulfite from sulfur-containing amino acids. If sulfites are not detoxified, there can be sulfite toxicity. The transsulfuration pathway metabolizes selenomethionine, whereby selenium from selenomethionine can be used for selenoprotein synthesis. The low activity of the transsulfuration pathway decreases selenoprotein synthesis. Glutathione peroxidase (GPX), with various GPXs being selenoprotein, is low in schizophrenia. The dysregulations of selenoproteins would lead to oxidant stress, which would increase the methylation of genes and histones leading to epigenetic changes in TRS. An add-on treatment to mainline antipsychotics is proposed for TRS that targets the dysregulations of the transsulfuration pathway and the dysregulations of other pathways stemming from the transsulfuration pathway being dysregulated.

  • Ali, A., Waly, M., Al-Farsi, Y.M., Essa, M.M., Al-Sharbati, M.M., and Deth, R.C. (2011). Hyperhomocysteinemia among Omani autistic children: a case-control study. Acta Biochim. Pol. 58, 547–551.

    • PubMed
    • Export Citation
  • Altaany, Z., Yang, G., and Wang, R. (2013). Crosstalk between hydrogen sulfide and nitric oxide in endothelial cells. J. Cell. Mol. Med. 17, 879–888.

    • Crossref
    • PubMed
    • Export Citation
  • Anderson, S.A., Nizzi, C.P., Chang, Y.I., Deck, K.M., Schmidt, P.J., Galy, B., Damnernsawad, A., Broman, A.T., Kendziorski, C., Hentze, M.W., et al. (2013). The IRP1-HIF-2α axis coordinates iron and oxygen sensing with erythropoiesis and iron absorption. Cell Metab. 17, 282–290.

    • Crossref
    • PubMed
    • Export Citation
  • Baker, D.H. (2006). Comparative species utilization and toxicity of sulfur amino acids. J. Nutr. 136, 1670S–1675S.

    • Crossref
    • PubMed
    • Export Citation
  • Ben-Shachar, D. (2017). Mitochondrial multifaceted dysfunction in schizophrenia; complex I as a possible pathological target. Schizophr. Res. 187, 3–10.

    • Crossref
    • PubMed
    • Export Citation
  • Bergman, O. and Ben-Shachar, D. (2016). Mitochondrial oxidative phosphorylation system (OXPHOS) deficits in schizophrenia: possible interactions with cellular processes. Can. J. Psychiatry 61, 457–469.

    • Crossref
    • PubMed
    • Export Citation
  • Bochtler, M., Kolano, A., and Xu, G.L. (2017). DNA demethylation pathways: additional players and regulators. Bioessays 39, 1–13.

    • PubMed
    • Export Citation
  • Bouaziz, N., Ayedi, I., Sidhom, O., Kallel, A., Rafrafi, R., Jomaa, R., Melki, W., Feki, M., Kaabechi, N., and El Hechmi, Z. (2010). Plasma homocysteine in schizophrenia: determinants and clinical correlations in Tunisian patients free from antipsychotics. Psychiatry Res. 179, 24–29.

    • Crossref
    • PubMed
    • Export Citation
  • Bridges, R.J., Natale, N.R., and Patel, S.A. (2012). System xc cystine/glutamate antiporter: an update on molecular pharmacology and roles within the CNS. Br. J. Pharmacol. 165, 20–34.

    • Crossref
    • PubMed
    • Export Citation
  • Brigelius-Flohé, R. and Maiorino, M. (2013). Glutathione peroxidases. Biochim. Biophys. Acta 1830, 3289–3303.

    • Crossref
    • PubMed
    • Export Citation
  • Bubber, P., Hartounian, V., Gibson, G.E., and Blass, J.P. (2011). Abnormalities in the tricarboxylic acid (TCA) cycle in the brains of schizophrenia patients. Eur. Neuropsychopharmacol. 21, 254–260.

    • Crossref
    • PubMed
    • Export Citation
  • Buckley, P.F. and Stahl, S.M. (2007). Pharmacological treatment of negative symptoms of schizophrenia: therapeutic opportunity or cul-de-sac? Acta Psychiatr. Scand. 115, 93–100.

    • Crossref
    • PubMed
    • Export Citation
  • Burk, R.F. and Hill, K.E. (2015). Regulation of selenium metabolism and transport. Annu. Rev. Nutr. 35, 109–134.

    • Crossref
    • PubMed
    • Export Citation
  • Cai, L., Chen, T., Yang, J., Zhou, K., Yan, X., Chen, W., Sun, L., Li, L., Qin, S., and Wang, P. (2015). Serum trace element differences between schizophrenia patients and controls in the Han Chinese population. Sci. Rep. 5, 15013.

    • Crossref
    • Export Citation
  • Cao, B., Yan, L., Ma, J., Jin, M., Park, C., Nozari, Y., Kazmierczak, O.P., Zuckerman, H., Lee, Y., Pan, Z., et al. (2019). Comparison of serum essential trace metals between patients with schizophrenia and healthy controls. J. Trace Elem. Med. Biol. 51, 79–85.

    • Crossref
    • PubMed
    • Export Citation
  • Cardoso, B.R., Roberts, B.R., Bush, A.I., and Hare, D.J. (2015). Selenium, selenoproteins and neurodegenerative diseases. Metallomics 7, 1213–1228.

    • Crossref
    • PubMed
    • Export Citation
  • Cavelier, L., Jazin, E.E., Eriksson, I., Prince, J., Båve, U., Oreland, L., and Gyllensten, U. (1995). Decreased cytochrome-c oxidase activity and lack of age-related accumulation of mitochondrial DNA deletions in the brains of schizophrenics. Genomics 29, 217–224.

    • Crossref
    • PubMed
    • Export Citation
  • Chen, O.S., Schalinske, K.L., and Eisenstein, R.S. (1997). Dietary iron intake modulates the activity of iron regulatory proteins and the abundance of ferritin and mitochondrial aconitase in rat liver. J. Nutr. 127, 238–248.

    • Crossref
    • PubMed
    • Export Citation
  • Claerhout, H., Witters, P., Régal, L., Jansen, K., Van Hoestenberghe, M.R., Breckpot, J., and Vermeersch, P. (2018). Isolated sulfite oxidase deficiency. J. Inherit. Metab. Dis. 41, 101–108.

    • Crossref
    • PubMed
    • Export Citation
  • Clay, H.B., Sillivan, S., and Konradi, C. (2011). Mitochondrial dysfunction and pathology in bipolar disorder and schizophrenia. Int. J. Dev. Neurosci. 29, 311–324.

    • Crossref
    • PubMed
    • Export Citation
  • Cousins, R.J. (1983). Metallothionein – aspects related to copper and zinc metabolism. J. Inherit. Metab. Dis. 6, 15–21.

    • Crossref
    • PubMed
    • Export Citation
  • Cunningham, O., Gore, M.G., and Mantle, T.J. (2000). Initial-rate kinetics of the flavin reductase reaction catalysed by human biliverdin-IXβ reductase (BVR-B). Biochem. J. 345, 393–399.

    • Crossref
    • PubMed
    • Export Citation
  • Dietrich-Muszalska, A. and Kwiatkowska, A. (2014). Generation of superoxide anion radicals and platelet glutathione peroxidase activity in patients with schizophrenia. Neuropsychiatr. Dis. Treat. 10, 703–709.

    • PubMed
    • Export Citation
  • Do, K.Q., Trabesinger, A.H., Kirsten-Krüger, M., Lauer, C.J., Dydak, U., Hell, D., Holsboer, F., Boesiger, P., and Cuénod, M. (2000). Schizophrenia: glutathione deficit in cerebrospinal fluid and prefrontal cortex in vivo. Eur. J. Neurosci. 12, 3721–3728.

    • Crossref
    • PubMed
    • Export Citation
  • Dupuy, J., Volbeda, A., Carpentier, P., Darnault, C., Moulis, J.M., and Fontecilla-Camps, J.C. (2006). Crystal structure of human iron regulatory protein 1 as cytosolic aconitase. Structure 14, 129–139.

    • Crossref
    • PubMed
    • Export Citation
  • Elovson, J. and Vagelos, P.R. (1968). Acyl carrier protein. X. Acyl carrier protein synthetase. J. Biol. Chem. 243, 3603–3611.

    • PubMed
    • Export Citation
  • Eren, E., Yeğin, A., Yilmaz, N., and Herken, H. (2010). Serum total homocysteine, folate and vitamin B12 levels and their correlation with antipsychotic drug doses in adult male patients with chronic schizophrenia. Clin. Lab. 56, 513–518.

    • PubMed
    • Export Citation
  • Fagerberg, L., Hallström, B.M., Oksvold, P., Kampf, C., Djureinovic, D., Odeberg, J., Habuka, M., Tahmasebpoor, S., Danielsson, A., Edlund, K., et al. (2014). Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Mol. Cell. Proteomics 13, 397–406.

    • Crossref
    • PubMed
    • Export Citation
  • Farina, N., Jernerén, F., Turner, C., Hart, K., and Tabet, N. (2017). Homocysteine concentrations in the cognitive progression of Alzheimer’s disease. Exp. Gerontol. 99, 146–150.

    • Crossref
    • PubMed
    • Export Citation
  • Frazer, D.M. and Anderson, G.J. (2014). The regulation of iron transport. Biofactors 40, 206–214.

    • Crossref
    • PubMed
    • Export Citation
  • Gnandt, E., Dörner, K., Strampraad, M.F.J., de Vries, S., and Friedrich, T. (2016). The multitude of iron-sulfur clusters in respiratory complex I. Biochim. Biophys. Acta 1857, 1068–1072.

    • Crossref
    • PubMed
    • Export Citation
  • González, S., Huerta, J.M., Alvarez-Uría, J., Fernández, S., Patterson, A.M., and Lasheras, C. (2004). Serum selenium is associated with plasma homocysteine concentrations in elderly humans. J. Nutr. 134, 1736–1740.

    • Crossref
    • PubMed
    • Export Citation
  • Grey, V., Mohammed, S.R., Smountas, A.A., Bahlool, R., and Lands, L.C. (2003). Improved glutathione status in young adult patients with cystic fibrosis supplemented with whey protein. J. Cyst. Fibros. 2, 195–198.

    • Crossref
    • PubMed
    • Export Citation
  • Gubert, C., Stertz, L., Pfaffenseller, B., Panizzutti, B.S., Rezin, G.T., Massuda, R., Streck, E.L., Gama, C.S., Kapczinski, F., and Kunz, M. (2013). Mitochondrial activity and oxidative stress markers in peripheral blood mononuclear cells of patients with bipolar disorder, schizophrenia, and healthy subjects. J. Psychiatr Res. 47, 1396–1402.

    • Crossref
    • PubMed
    • Export Citation
  • Haidemenos, A., Kontis, D., Gazi, A., Kallai, E., Allin, M., and Lucia, B. (2007). Plasma homocysteine, folate and B12 in chronic schizophrenia. Prog. Neuropsychopharmacol. Biol. Psychiatry 31, 1289–1296.

    • Crossref
    • PubMed
    • Export Citation
  • Haile, D.J., Rouault, T.A., Tang, C.K., Chin, J., Harford, J.B., and Klausner, R.D. (1992). Reciprocal control of RNA-binding and aconitase activity in the regulation of the iron-responsive element binding protein: role of the iron-sulfur cluster. Proc. Natl. Acad. Sci. U. S. A. 89, 7536–7540.

    • Crossref
    • PubMed
    • Export Citation
  • Han, D., Handelman, G., Marcocci, L., Sen, C.K., Roy, S., Kobuchi, H., Tritschler, H.J., Flohé, L., and Packer, L. (1997). Lipoic acid increases de novo synthesis of cellular glutathione by improving cystine utilization. Biofactors 6, 321–338.

    • Crossref
    • PubMed
    • Export Citation
  • Hoppel, C.L. (1982). Carnitine and carnitine palmitoyltransferase in fatty acid oxidation and ketosis. Fed. Proc. 41, 2853–2857.

    • PubMed
    • Export Citation
  • Huntington Study Group Pre2CARE Investigators, Hyson, H.C., Kieburtz, K., Shoulson, I., McDermott, M., Ravina, B., de Blieck, E.A., Cudkowicz, M.E., Ferrante, R.J., and Como, P. (2010). Safety and tolerability of high-dosage coenzyme Q10 in Huntington’s disease and healthy subjects. Mov. Disord. 25, 1924–8.

    • Crossref
    • PubMed
    • Export Citation
  • Institute of Medicine (US) Standing Committee on the Scientific Evaluation of Dietary Reference Intakes and Its Panel on Folate, Other B Vitamins, and Choline. (1998). Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline (Washington, DC: National Academies Press (US)).

  • Institute of Medicine (US) Panel on Dietary Antioxidants and Related Compounds. (2000). Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids (Washington, DC: National Academies Press (US)).

  • Institute of Medicine (US) Panel on Micronutrients. (2001). Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc (Washington, DC: National Academies Press (US)).

  • Jabłońska, E. and Reszka, E. (2017). Selenium and epigenetics in cancer: focus on DNA methylation. Adv. Cancer Res. 136, 193–234.

    • Crossref
    • PubMed
    • Export Citation
  • Jayakumar, P.N., Gangadhar, B.N., Venkatasubramanian, G., Desai, S., Velayudhan, L., Subbakrishna, D., and Keshavan, M.S. (2010). High energy phosphate abnormalities normalize after antipsychotic treatment in schizophrenia: a longitudinal 31P MRS study of basal ganglia. Psychiatry Res. 181, 237–240.

    • Crossref
    • PubMed
    • Export Citation
  • Jiang, R., Hua, C., Wan, Y., Jiang, B., Hu, H., Zheng, J., Fuqua, B.K., Dunaief, J.L., Anderson, G.J., and David, S. (2015). Hephaestin and ceruloplasmin play distinct but interrelated roles in iron homeostasis in mouse brain. J. Nutr. 145, 1003–1009.

    • Crossref
    • PubMed
    • Export Citation
  • Jiang, B., Liu, G., Zheng, J., Chen, M., Maimaitiming, Z., Chen, M., Liu, S., Jiang, R., Fuqua, B.K., and Dunaief, J.L. (2016). Hephaestin and ceruloplasmin facilitate iron metabolism in the mouse kidney. Sci. Rep. 6, 39470.

    • Crossref
    • PubMed
    • Export Citation
  • Johnson, M.K., Morningstar, J.E., Bennett, D.E., Ackrell, B.A., and Kearney, E.B. (1985). Magnetic circular dichroism studies of succinate dehydrogenase. Evidence for [2Fe-2S], [3Fe-xS], and [4Fe-4S] centers in reconstitutively active enzyme. J. Biol. Chem. 260, 7368–7378.

    • PubMed
    • Export Citation
  • Kale, A., Naphade, N., Sapkale, S., Kamaraju, M., Pillai, A., Joshi, S., and Mahadik, S. (2010). Reduced folic acid, vitamin B12 and docosahexaenoic acid and increased homocysteine and cortisol in never-medicated schizophrenia patients: implications for altered one-carbon metabolism. Psychiatry Res. 30, 47–53.

  • Kennedy, J.L., Altar, C.A., Taylor, D.L., Degtiar, I., and Hornberger, J.C. (2014). The social and economic burden of treatment-resistant schizophrenia: a systematic literature review. Int. Clin. Psychopharmacol. 29, 63–76.

    • Crossref
    • PubMed
    • Export Citation
  • Kimura, H. (2011). Hydrogen sulfide: its production and functions. Exp. Physiol. 96, 833–835.

    • Crossref
    • PubMed
    • Export Citation
  • Klausner, R.D. and Rouault, T.A. (1993). A double life: cytosolic aconitase as a regulatory RNA binding protein. Mol. Biol. Cell 4, 1–5.

    • Crossref
    • PubMed
    • Export Citation
  • Koegel, P., Burnam, M.A., and Farr, R.K. (1988). The prevalence of specific psychiatric disorders among homeless individuals in the inner city of Los Angeles. Arch. Gen. Psychiatry 45, 1085–1092.

    • Crossref
    • PubMed
    • Export Citation
  • Lall, M.M., Ferrell, J., Nagar, S., Fleisher, L.N., and McGahan, M.C. (2008). Iron regulates L-cystine uptake and glutathione levels in lens epithelial and retinal pigment epithelial cells by its effect on cytosolic aconitase. Invest. Ophthalmol. Vis. Sci. 249, 310–319.

  • Laukka, T., Mariani, C.J., Ihantola, T., Cao, J.Z., Hokkanen, J., Kaelin, W.G. Jr., Godley, L.A., and Koivunen, P. (2016). Fumarate and succinate regulate expression of hypoxia-inducible genes via TET enzymes. J. Biol. Chem. 291, 256–265.

  • Leonardi, R. and Jackowski, S. (2007). Biosynthesis of pantothenic acid and coenzyme A. EcoSal Plus 2. doi: .

    • Crossref
    • PubMed
    • Export Citation
  • Levine, J., Stahl, Z., Sela, B.A., Gavendo, S., Ruderman, V., and Belmaker, R.H. (2002). Elevated homocysteine levels in young male patients with schizophrenia. Am. J. Psychiatry 159, 1790–1792.

    • Crossref
    • PubMed
    • Export Citation
  • Li, K., Tong, W.H., Hughes, R.M., and Rouault, T.A. (2006). Roles of the mammalian cytosolic cysteine desulfurase, ISCS, and scaffold protein, ISCU, in iron-sulfur cluster assembly. J. Biol. Chem. 281, 12344–12351.

    • Crossref
    • PubMed
    • Export Citation
  • Li, J.J., Li, Q., Du, H.P., Wang, Y.L., You, S.J., Wang, F., Xu, X.S., Cheng, J., Cao, Y.J., Liu, C.F., et al. (2015). Homocysteine triggers inflammatory responses in macrophages through inhibiting CSE-H2S signaling via DNA hypermethylation of CSE promoter. Int. J. Mol. Sci. 16, 12560–12577.

    • Crossref
    • PubMed
    • Export Citation
  • Licking, N., Murchison, C., Cholerton, B., Zabetian, C.P., Hu, S.C., Montine, T.J., Peterson-Hiller, A.L., Chung, K.A., Edwards, K., Leverenz, J.B., et al. (2017). Homocysteine and cognitive function in Parkinson’s disease. Parkinsonism Relat. Disord. 44, 1–5.

    • Crossref
    • PubMed
    • Export Citation
  • Lin, C.H., Lin, P.P., Lin, C.Y., Lin, C.H., Huang, C.H., Huang, Y.J., and Lane, H.Y. (2016). Decreased mRNA expression for the two subunits of system xc(-), SLC3A2 and SLC7A11, in WBC in patients with schizophrenia: evidence in support of the hypo-glutamatergic hypothesis of schizophrenia. J. Psychiatr. Res. 72, 58–63.

    • Crossref
    • PubMed
    • Export Citation
  • Lindstedt, G. and Lindstedt, S. (1970). Cofactor requirements of γ-butyrobetaine hydroxylase from rat liver. J. Biol. Chem. 245, 4178–4186.

    • PubMed
    • Export Citation
  • Liu, Y., Tao, H., Yang, X., Huang, K., Zhang, X., and Li, C. (2019). Decreased serum oxytocin and increased homocysteine in first-episode schizophrenia patients. Front. Psychiatry 10, 217.

    • Crossref
    • PubMed
    • Export Citation
  • Lu, S.C. (2013). Glutathione synthesis. Biochim. Biophys. Acta 1830, 3143–3153.

    • Crossref
    • PubMed
    • Export Citation
  • Malla, A.K., Norman, R.M., Williamson, P., Cortese, L., and Diaz, F. (1993). Three syndrome concept of schizophrenia. A factor analytic study. Schizophr. Res. 10, 143–150.

  • Marelja, Z., Stöcklein, W., Nimtz, M., and Leimkühler, S. (2008). A novel role for human Nfs1 in the cytoplasm: Nfs1 acts as a sulfur donor for MOCS3, a protein involved in molybdenum cofactor biosynthesis. J. Biol. Chem. 283, 25178–25185.

    • Crossref
    • PubMed
    • Export Citation
  • Marelja, Z., Mullick Chowdhury, M., Dosche, C., Hille, C., Baumann, O., Löhmannsröben, H.G., and Leimkühler, S. (2013). The L-cysteine desulfurase NFS1 is localized in the cytosol where it provides the sulfur for molybdenum cofactor biosynthesis in humans. PLoS One 8, e60869.

    • Crossref
    • PubMed
    • Export Citation
  • Marshall, J.R., Burk, R.F., Payne Ondracek, R., Hill, K.E., Perloff, M., and Davis, W., Pili, R., George, S., and Bergan, R. (2017). Selenomethionine and methyl selenocysteine: multiple-dose pharmacokinetics in selenium-replete men. Oncotarget 8, 26312–26322.

    • PubMed
    • Export Citation
  • Massie, A., Boillée, S., Hewett, S., Knackstedt, L., and Lewerenz, J. (2015). Main path and byways: non-vesicular glutamate release by system xc as an important modifier of glutamatergic neurotransmission. Neurochemistry 135, 1062–1079.

    • Crossref
    • Export Citation
  • Matsuzawa, D., Obata, T., Shirayama, Y., Nonaka, H., Kanazawa, Y., Yoshitome, E., Takanashi, J., Matsuda, T., Shimizu, E., Ikehira, H., et al. (2008). Negative correlation between brain glutathione level and negative symptoms in schizophrenia: a 3T 1H-MRS study. PLoS One 3, e1944.

    • Crossref
    • PubMed
    • Export Citation
  • Maurer, I., Zierz, S., and Möller, H. (2001). Evidence for a mitochondrial oxidative phosphorylation defect in brains from patients with schizophrenia. Schizophr. Res. 48, 125–136.

    • Crossref
    • PubMed
    • Export Citation
  • McGahan, M.C., Harned, J., Mukunnemkeril, M., Goralska, M., Fleisher, L., and Ferrell, J.B. (2005). Iron alters glutamate secretion by regulating cytosolic aconitase activity. Am. J. Physiol. Cell. Physiol. 288, C1117–C1124.

    • Crossref
    • PubMed
    • Export Citation
  • McKinley, M.C. (2000). Nutritional aspects and possible pathological mechanisms of hyperhomocysteinaemia: an independent risk factor for vascular disease. Proc. Nutr. Soc. 59, 221–237.

    • Crossref
    • PubMed
    • Export Citation
  • Medina, D., Thompson, H., Ganther, H., and Ip, C. (2001).Se-methylselenocysteine: a new compound for chemoprevention of breast cancer. Nutr. Cancer 40, 12–17.

    • Crossref
    • PubMed
    • Export Citation
  • Meltzer, H.Y. (1997). Treatment-resistant schizophrenia – the role of clozapine. Curr. Med. Res. Opin. 14, 1–20.

    • Crossref
    • PubMed
    • Export Citation
  • Mendel, R.R. (2013). The molybdenum cofactor. J. Biol. Chem. 288, 3165–3172.

  • Michel, T.M., Sheldrick, A.J., Camara, S., Grünblatt, E., Schneider, F., and Riederer, P. (2011). Alteration of the pro-oxidant xanthine oxidase (XO) in the thalamus and occipital cortex of patients with schizophrenia. World J. Biol. Psychiatry. 12, 588–597.

    • Crossref
    • PubMed
    • Export Citation
  • Misiak, B., Frydecka, D., Slezak, R., Piotrowski, P., and Kiejna, A. (2014). Elevated homocysteine level in first-episode schizophrenia patients – the relevance of family history of schizophrenia and lifetime diagnosis of cannabis abuse. Metab. Brain Dis. 29, 661–670.

    • Crossref
    • PubMed
    • Export Citation
  • Möller, H.J. and Czobor, P. (2015). Pharmacological treatment of negative symptoms in schizophrenia. Eur. Arch. Psychiatry Clin. Neurosci. 265, 567–578.

    • Crossref
    • PubMed
    • Export Citation
  • Moustafa, A.A., Hewedi, D.H., Eissa, A.M., Frydecka, D., and Misiak, B. (2014). Homocysteine levels in schizophrenia and affective disorders – focus on cognition. Front. Behav. Neurosci. 8, 343.

    • PubMed
    • Export Citation
  • Moustafa, A.A., Hewedi, D.H., Eissa, A.M., Frydecka, D., and Misiak, B. (2015). Homocysteine levels in neurological disorders. Diet and Exercise in Cognitive Function and Neurological Diseases. T. Farooqui and A. Farooqui, eds. (Hoboken, NJ, USA: Wiley-Blackwell).

  • Muntjewerff, J.W., Kahn, R.S., Blom, H.J., and den Heijer, M. (2006). Homocysteine, methylenetetrahydrofolate reductase and risk of schizophrenia: a meta-analysis. Mol. Psychiatry 11, 143–149.

    • Crossref
    • PubMed
    • Export Citation
  • Narayan, S.K., Verman, A., Kattimani, S., Ananthanarayanan, P.H., and Adithan, C. (2014). Plasma homocysteine levels in depression and schizophrenia in South Indian Tamilian population. Ind. J. Psychiatry 56, 46–53.

    • Crossref
    • Export Citation
  • Niu, Y., DesMarais, T.L., Tong, Z., Yao, Y., and Costa, M. (2015). Oxidative stress alters global histone modification and DNA methylation. Free Radic. Biol. Med. 82, 22–28.

    • Crossref
    • PubMed
    • Export Citation
  • Nucifora, L.G., Tanaka, T., Hayes, L.N., Kim, M., Lee, B.J., Matsuda, T., Nucifora, F.C. Jr., Sedlak, T., Mojtabai, R., Eaton, W., et al. (2017). Reduction of plasma glutathione in psychosis associated with schizophrenia and bipolar disorder in translational psychiatry. Transl. Psychiatry 7, e1215.

    • Crossref
    • PubMed
    • Export Citation
  • Numata, S., Kinoshita, M., Tajima, A., Nishi, A., Imoto, I., and Ohmori, T. (2015). Evaluation of an association between plasma total homocysteine and schizophrenia by a Mendelian randomization analysis. BMC Med. Genet. 16, 54.

    • Crossref
    • PubMed
    • Export Citation
  • O’Donnell, C.P., Allott, K.A., Murphy, B.P., Yuen, H.P., Proffitt, T.M., Papas, A., Moral, J., Pham, T., O’Regan, M.K., Phassouliotis, C., et al. (2016). Adjunctive taurine in first-episode psychosis: a phase 2, double-blind, randomized, placebo-controlled study. J. Clin. Psychiatry 77, e1610–e1617.

    • Crossref
    • PubMed
    • Export Citation
  • Ohnishi, T., Ohnishi, S.T., and Salerno, J.C. (2018). Five decades of research on mitochondrial NADH-quinone oxidoreductase (complex I). Biol. Chem. 399, 1249–1264.

    • Crossref
    • PubMed
    • Export Citation
  • Olfson, M., Mechanic, D., Hansell, S., Boyer, C.A., and Walkup, J. (1999). Prediction of homelessness within three months of discharge among inpatients with schizophrenia. Psychiatr. Serv. 50, 667–673.

    • Crossref
    • PubMed
    • Export Citation
  • Oztürk, O.H., Küçükatay, V., Yönden, Z., Ağar, A., Bağci, H., and Delibaş, N. (2006). Expressions of N-methyl-D-aspartate receptors NR2A and NR2B subunit proteins in normal and sulfite-oxidase deficient rat’s hippocampus: effect of exogenous sulfite ingestion. Arch. Toxicol. 80, 671–679.

    • Crossref
    • PubMed
    • Export Citation
  • Parmeggiani, B., Moura, A.P., Grings, M., Bumbel, A.P., de Moura Alvorcem, L., Tauana Pletsch, J., Fernandes, C.G., Wyse, A.T.S., Wajner, M., and Leipnitz, G. (2015). In vitro evidence that sulfite impairs glutamatergic neurotransmission and inhibits glutathione metabolism-related enzymes in rat cerebral cortex. Int. J. Dev. Neurosci. 42, 68–75.

    • Crossref
    • PubMed
    • Export Citation
  • Pasiakos, S.M., McLellan, T.M., and Lieberman, H.R. (2015). The effects of protein supplements on muscle mass, strength, and aerobic and anaerobic power in healthy adults: a systematic review. Sports Med. 45, 111–131.

    • Crossref
    • PubMed
    • Export Citation
  • Paul, B.D. and Snyder, S.H. (2017). Gasotransmitter hydrogen sulfide signaling in neuronal health and disease. Biochem. Pharmacol. 149, 101–109.

    • PubMed
    • Export Citation
  • Petronijević, N.D., Radonjić, N.V., Ivković, M.D., Marinković, D., Piperski, V.D., Duricić, B.M., and Paunović, V.R. (2008). Plasma homocysteine levels in young male patients in the exacerbation and remission phase of schizophrenia. Prog. Neuropsychopharmacol. Biol. Psychiatry 32, 1921–1926.

    • Crossref
    • PubMed
    • Export Citation
  • Pillai, R., Uyehara-Lock, J.H., and Bellinger, F.P. (2014). Selenium and selenoprotein function in brain disorders. IUBMB Life 66, 229–239.

    • Crossref
    • PubMed
    • Export Citation
  • Prabakaran, S., Swatton, J.E., Ryan, M.M., Huffaker, S.J., Huang, J.T., Griffin, J.L., Wayland, M., Freeman, T., Dudbridge, F., Lilley, K.S., et al. (2004). Mitochondrial dysfunction in schizophrenia: evidence for compromised brain metabolism and oxidative stress. Mol. Psychiatry 9, 684–697, 643.

    • Crossref
    • PubMed
    • Export Citation
  • Raffa, M., Mechri, A., Othman, L.B., Fendri, C., Gaha, L., and Kerkeni, A. (2009). Decreased glutathione levels and antioxidant enzyme activities in untreated and treated schizophrenic patients. Prog. Neuropsychopharmacol. Biol. Psychiatry 33, 1178–1183.

    • Crossref
    • PubMed
    • Export Citation
  • Raffa, M., Atig, F., Mhalla, A., Kerkeni, A., and Mechri, A. (2011). Decreased glutathione levels and impaired antioxidant enzyme activities in drug-naive first-episode schizophrenic patients. BMC Psychiatry 11, 124.

    • Crossref
    • PubMed
    • Export Citation
  • Raghuvanshi, R., Chandra, M., Misra, P.C., and Misra, M.K. (2005). Effect of vitamin E on the platelet xanthine oxidase and lipid peroxidation in the patients of myocardial infarction. Ind. J. Clin. Biochem. 20, 26–29.

    • Crossref
    • Export Citation
  • Rasmussen, K.D. and Helin, K. (2016). Role of TET enzymes in DNA methylation, development, and cancer. Genes Dev. 30, 733–750.

    • Crossref
    • PubMed
    • Export Citation
  • Reddy, R., Keshavan, M., and Yao, J.K. (2003). Reduced plasma antioxidants in first-episode patients with schizophrenia. Schizophr. Res. 62, 205–212.

    • Crossref
    • PubMed
    • Export Citation
  • Romero, M.J., Platt, D.H., Caldwell, R.B., and Caldwell, R.W. (2006). Therapeutic use of citrulline in cardiovascular disease. Cardiovasc. Drug Rev. 24, 275–290.

    • Crossref
    • PubMed
    • Export Citation
  • Rooseboom, M., Vermeulen, N.P., Groot, E.J., and Commandeur, J.N. (2002). Tissue distribution of cytosolic β-elimination reactions of selenocysteine Se-conjugates in rat and human. Chem. Biol. Interact. 140, 243–264.

    • Crossref
    • PubMed
    • Export Citation
  • Ryan, M.G., Ratnam, K., and Hille, R. (1995). The molybdenum centers of xanthine oxidase and xanthine dehydrogenase. Determination of the spectral change associated with reduction from the Mo(VI) to the Mo(IV) state. J. Biol. Chem. 270, 19209–19212.

  • Salagre, E., Vizuete, A.F., Leite, M., Brownstein, D.J., McGuinness, A., Jacka, F., Dodd, S., Stubbs, B., Köhler, C.A., Vieta, E., et al. (2017). Homocysteine as a peripheral biomarker in bipolar disorder: a meta-analysis. Eur. Psychiatry 43, 81–91.

    • Crossref
    • PubMed
    • Export Citation
  • Samara, M.T., Dold, M., Gianatsi, M., Nikolakopoulou, A., Helfer, B., Salanti, G., and Leucht, S. (2016). Efficacy, acceptability, and tolerability of antipsychotics in treatment-resistant schizophrenia: a network meta-analysis. JAMA Psychiatry 73, 199–210.

    • Crossref
    • PubMed
    • Export Citation
  • Santiago, P. (2012). Ferrous versus ferric oral iron formulations for the treatment of iron deficiency: a clinical overview. Sci. World J. 2012, 846824.

  • Saraste, M. (1999). Oxidative phosphorylation at the fin de siècle. Science. 283, 1488–1493.

    • Crossref
    • PubMed
    • Export Citation
  • Schizophrenia Working Group of the Psychiatric Genomics Consortium. (2014). Biological insights from 108 schizophrenia-associated genetic loci. Nature 511, 421–427.

    • PubMed
    • Export Citation
  • Shao, A. and Hathcock, J.N. (2008). Risk assessment for the amino acids taurine, L-glutamine and L-arginine. Regul. Toxicol. Pharmacol. 50, 376–399.

    • Crossref
    • PubMed
    • Export Citation
  • Shi, L., Du, J.B., Pu, D.F., Qi, J.G., and Tang, C.S. (2006). Regulation of endogenous cystathionine-γ-lyase gene expression in high pulmonary flow by nitric oxide precursor. Zhongguo Ying Yong Sheng Li Xue Za Zhi. 22, 343–347.

    • PubMed
    • Export Citation
  • Soda, K., Oikawa, T., and Esaki, N. (1999). Vitamin B6 enzymes participating in selenium amino acid metabolism. Biofactors 10, 257–262.

    • Crossref
    • PubMed
    • Export Citation
  • Souza, J.S., Kayo, M., Tassell, I., Martins, C.B., and Elkis, H. (2013). Efficacy of olanzapine in comparison with clozapine for treatment-resistant schizophrenia: evidence from a systematic review and meta-analyses. CNS Spectr. 18, 82–89.

    • Crossref
    • PubMed
    • Export Citation
  • Speckmann, B. and Grune, T. (2015). Epigenetic effects of selenium and their implications for health. Epigenetics 10, 179–179.

    • Crossref
    • PubMed
    • Export Citation
  • Steinbrenner, H. and Sies, H. (2013). Selenium homeostasis and antioxidant selenoproteins in brain: implications for disorders in the central nervous system. Arch. Biochem. Biophys. 536, 152–157.

    • Crossref
    • PubMed
    • Export Citation
  • Sun, Q., Wang, B., Li, Y., Sun, F., Li, P., Xia, W., Zhou, X., Li, Q., Wang, X., Chen, J., et al. (2016). Taurine supplementation lowers blood pressure and improves vascular function in prehypertension: randomized, double-blind, placebo-controlled study. Hypertension 67, 541–954.

    • Crossref
    • PubMed
    • Export Citation
  • Takano, N., Peng, Y.J., Kumar, G.K., Luo, W., Hu, H., Shimoda, L.A., Suematsu, M., Prabhakar, N.R., and Semenza, G.L. (2014). Hypoxia-inducible factors regulate human and rat cystathionine β-synthase gene expression. Biochem. J. 458, 203–211.

    • Crossref
    • PubMed
    • Export Citation
  • Tarhonskaya, H., Nowak, R.P., Johansson, C., Szykowska, A., Tumber, A., Hancock, R.L., Lang, P., Flashman, E., Oppermann, U., and Schofield, C.J. (2017). Studies on the interaction of the histone demethylase KDM5B with tricarboxylic acid cycle intermediates. J. Mol. Biol. 429, 2895–2906.

    • Crossref
    • PubMed
    • Export Citation
  • Thai, L., Carta, A., Clarke, W.R., Ferris, S.H., Friedland, R.P., Petersen, R.C., Pettegrew, J.W., Pfeiffer, E., Raskind, M.A., Sano, M., et al. (1996). A 1-year multicenter placebo-controlled study of acetyl-L-carnitine in patients with Alzheimer’s disease. Neurology 47, 705–711.

    • Crossref
    • PubMed
    • Export Citation
  • Tsugawa, S., Noda, Y., Tarumi, R., Mimura, Y., Yoshida, K., Iwata, Y., Elsalhy, M., Kuromiya, M., Kurose, S., Masuda, F., et al. (2019). Glutathione levels and activities of glutathione metabolism enzymes in patients with schizophrenia: a systematic review and meta-analysis. J. Psychopharmacol. 33, 1199–1214.

    • Crossref
    • PubMed
    • Export Citation
  • Tsukada, Y., Fang, J., Erdjument-Bromage, H., Warren, M.E., Borchers, C.H., Tempst, P., and Zhang, Y. (2006). Histone demethylation by a family of JmjC domain-containing proteins. Nature 439, 811–816.

    • Crossref
    • PubMed
    • Export Citation
  • Uno, Y. and Coyle, J.T. (2019). Glutamate hypothesis in schizophrenia. Psychiatry Clin. Neurosci. 73, 204–215.

    • Crossref
    • PubMed
    • Export Citation
  • Van Vranken, J.G., Jeong, M.Y., Wei, P., Chen, Y.C., Gygi, S.P., Winge, D., and Rutter, J. (2016). The mitochondrial acyl carrier protein (ACP) coordinates mitochondrial fatty acid synthesis with iron sulfur cluster biogenesis. eLife 5, pii e17828.

    • PubMed
    • Export Citation
  • Vaz, F.M., Ofman, R., Westinga, K., Back, J.W., and Wanders, R.J. (2001). Molecular and biochemical characterization of rat ε-N-trimethyllysine hydroxylase, the first enzyme of carnitine biosynthesis. J. Biol. Chem. 276, 33512–33517.

    • Crossref
    • PubMed
    • Export Citation
  • Volz, H.R., Riehemann, S., Maurer, I., Smesny, S., Sommer, M., Rzanny, R., Holstein, W., Czekalla, J., and Sauer, H. (2000). Reduced phosphodiesters and high-energy phosphates in the frontal lobe of schizophrenic patients: a (31)P chemical shift spectroscopic-imaging study. Biol. Psychiatry. 47, 954–961.

    • Crossref
    • PubMed
    • Export Citation
  • Wang, X., Oberleas, D., Yang, M.T., and Yang, S.P. (1992). Molybdenum requirement of female rats. J. Nutr. 122, 1036–1041.

    • Crossref
    • PubMed
    • Export Citation
  • Watmough, N.J. and Frerman, F.E. (2010). The electron transfer flavoprotein: ubiquinone oxidoreductases. Biochim. Biophys. Acta 1797, 1910–1916.

    • Crossref
    • PubMed
    • Export Citation
  • Whillier, S., Raftos, J.E., Chapman, B., and Kuchel, P.W. (2009). Role of N-acetylcysteine and cystine in glutathione synthesis in human erythrocytes. Redox Rep. 14, 115–124.

    • Crossref
    • PubMed
    • Export Citation
  • Whitby, F.G., Phillips, J.D., Hill, C.P., McCoubrey, W., and Maines, M.D. (2002). Crystal structure of a biliverdin IXα reductase enzyme-cofactor complex. J. Mol. Biol. 319, 199–210.

  • Wolff, N.A., Garrick, M.D., Zhao, L., Garrick, L.M., Ghio, A., and Thévenod, F. (2018). A role for divalent metal transporter (DMT1) in mitochondrial uptake of iron and manganese. Sci. Rep. 8, 211.

    • Crossref
    • PubMed
    • Export Citation
  • Xiong, J.W., Wei, B., Li, Y.K., Zhan, J.Q., Jiang, S.Z., Chen, H.B., Yan, K., Yu, B., and Yang, Y. (2018). Decreased plasma levels of gasotransmitter hydrogen sulfide in patients with schizophrenia: correlation with psychopathology and cognition. Psychopharmacology (Berl.) 235, 2267–2274.

    • Crossref
    • PubMed
    • Export Citation
  • Yamori, Y., Liu, L., Mori, M., Sagara, M., Murakami, S., Nara, Y., and Mizushima, S. (2009). Taurine as the nutritional factor for the longevity of the Japanese revealed by a world-wide epidemiological survey. Adv. Exp. Med. Biol. 643, 13–25.

    • Crossref
    • PubMed
    • Export Citation
  • Yamori, Y., Taguchi, T., Mori, H., and Mori, M. (2010). Low cardiovascular risks in the middle aged males and females excreting greater 24-hour urinary taurine and magnesium in 41 WHO-CARDIAC study populations in the world. J. Biomed. Sci. 17, S21.

    • Crossref
    • PubMed
    • Export Citation
  • Yanfei, W., Lin, S., Junbao, D., and Chaoshu, T. (2006). Impact of L-arginine on hydrogen sulfide/cystathionine-γ-lyase pathway in rats with high blood flow-induced pulmonary hypertension. Biochem. Biophys. Res. Commun. 345, 851–857.

    • Crossref
    • PubMed
    • Export Citation
  • Yao, J.K., Reddy, R., and van Kammen, D.P. (1998). Reduced level of plasma antioxidant uric acid in schizophrenia. Psychiatry Res. 80, 29–39.

    • Crossref
    • PubMed
    • Export Citation
  • Yao, J.K., Dougherty, G.G. Jr., Reddy, R.D., Keshavan, M.S., Montrose, D.M., Matson, W.R., McEvoy, J., and Kaddurah-Daouk, R. (2010). Homeostatic imbalance of purine catabolism in first-episode neuroleptic-naïve patients with schizophrenia. PLoS One 5, e9508.

    • Crossref
    • PubMed
    • Export Citation
  • Yusufi, B., Mukherjee, S., Flanagan, R., Paton, C., Dunn, G., Page, E., and Barnes, T.R. (2007). Prevalence and nature of side effects during clozapine maintenance treatment and the relationship with clozapine dose and plasma concentration. Int. Clin. Psychopharmacol. 22, 238–243.

    • Crossref
    • PubMed
    • Export Citation
  • Zhang, X., Vincent, A.S., Halliwell, B., and Wong, K.P. (2004). A mechanism of sulfite neurotoxicity: direct inhibition of glutamate dehydrogenase. J. Biol. Chem. 279, 43035–43045.

    • Crossref
    • PubMed
    • Export Citation
  • Zhang, C., Wang, R., Zhang, G., and Gong, D. (2016). Mechanistic insights into the inhibition of quercetin on xanthine oxidase. Int. J. Biol. Macromol. 112, 405–412.

Purchase article
Get instant unlimited access to the article.
$42.00
Log in
Already have access? Please log in.


or
Log in with your institution

Journal + Issues

Reviews in the Neurosciences provides a forum for reviews, critical evaluations and theoretical treatment of selective topics in the neurosciences. The journal provides an authoritative reference work for those interested in the structure and functions of the nervous system at all levels of analysis, including the genetic, molecular, cellular, behavioral, cognitive and clinical neurosciences.

Search