A complete overview of REEP1: old and new insights on its role in hereditary spastic paraplegia and neurodegeneration

Alessio Guglielmi 1
  • 1 Neurobiology Laboratory, International Centre of Genetic Engineering and Biotechnology, I-34149 Trieste, Italy
Alessio Guglielmi
  • Corresponding author
  • Neurobiology Laboratory, International Centre of Genetic Engineering and Biotechnology, I-34149 Trieste, Italy
  • Email
  • Further information
  • Alessio Guglielmi studied at Università degli Studi di Udine and obtained his bachelor’s degree in biotechnology based on a thesis project about implementations on ePCR in complex bacteriological populations. He then obtained his Master’s degree in medical biotechnology from the same university based on a thesis project about searching for new disease-associated isoforms of α-synuclein protein extracted from olfactory neurons of living patients and postmortem brains. He obtained his Ph.D. at the International Centre of Genetic Engineering and Biotechnology, working on a project aimed to find new insights on REEP1 antistress functions in AD.
  • Search for other articles:
  • degruyter.comGoogle Scholar

Abstract

At the end of 19th century, Adolf von Strümpell and Sigmund Freud independently described the symptoms of a new pathology now known as hereditary spastic paraplegia (HSP). HSP is part of the group of genetic neurodegenerative diseases usually associated with slow progressive pyramidal syndrome, spasticity, weakness of the lower limbs, and distal-end degeneration of motor neuron long axons. Patients are typically characterized by gait symptoms (with or without other neurological disorders), which can appear both in young and adult ages depending on the different HSP forms. The disease prevalence is at 1.3–9.6 in 100 000 individuals in different areas of the world, making HSP part of the group of rare neurodegenerative diseases. Thus far, there are no specific clinical and paraclinical tests, and DNA analysis is still the only strategy to obtain a certain diagnosis. For these reasons, it is mandatory to extend the knowledge on genetic causes, pathology mechanism, and disease progression to give clinicians more tools to obtain early diagnosis, better therapeutic strategies, and examination tests. This review gives an overview of HSP pathologies and general insights to a specific HSP subtype called spastic paraplegia 31 (SPG31), which rises after mutation of REEP1 gene. In fact, recent findings discovered an interesting endoplasmic reticulum antistress function of REEP1 and a role of this protein in preventing τ accumulation in animal models. For this reason, this work tries to elucidate the main aspects of REEP1, which are described in the literature, to better understand its role in SPG31 HSP and other pathologies.

  • Allison, R., Edgar, J.R., Pearson, G., Rizo, T., Newton, T., Günther, S., Berner, F., Hague, J., Connell, J.W., Winkler, J., et al. (2017). Defects in ER-endosome contacts impact lysosome function in hereditary spastic paraplegia. J. Cell Biol. 216, 1337–1355.

    • Crossref
    • PubMed
    • Export Citation
  • Appocher, C., Klima, R., and Feiguin, F. (2014). Functional screening in Drosophila reveals the conserved role of REEP1 in promoting stress resistance and preventing the formation of τ aggregates. Hum. Mol. Genet. 23, 6762–6772.

    • Crossref
    • PubMed
    • Export Citation
  • Beetz, C., Schüle, R., Deconinck, T., Tran-Viet, K.-N., Zhu, H., Kremer, B.P.H., Frints, S.G.M., van Zelst-Stams, W.A.G., Byrne, P., Otto, S., et al. (2008). REEP1 mutation spectrum and genotype/phenotype correlation in hereditary spastic paraplegia type 31. Brain J. Neurol. 131, 1078–1086.

    • Crossref
    • Export Citation
  • Beetz, C., Pieber, T.R., Hertel, N., Schabhüttl, M., Fischer, C., Trajanoski, S., Graf, E., Keiner, S., Kurth, I., Wieland, T., et al. (2012). Exome sequencing identifies a REEP1 mutation involved in distal hereditary motor neuropathy type V. Am. J. Hum. Genet. 91, 139–145.

    • Crossref
    • PubMed
    • Export Citation
  • Beetz, C., Koch, N., Khundadze, M., Zimmer, G., Nietzsche, S.,Hertel, N., Huebner, A.-K., Mumtaz, R., Schweizer, M., Dirren, E., et al. (2013). A spastic paraplegia mouse model reveals REEP1-dependent ER shaping. J. Clin. Invest. 123, 4273–4282.

    • Crossref
    • PubMed
    • Export Citation
  • Behan, W.M. and Maia, M. (1974). Strümpell’s familial spastic paraplegia: genetics and neuropathology. J. Neurol. Neurosurg. Psychiatry 37, 8–20.

    • Crossref
    • PubMed
    • Export Citation
  • Behrens, M., Bartelt, J., Reichling, C., Winnig, M., Kuhn, C., and Meyerhof, W. (2006). Members of RTP and REEP gene families influence functional bitter taste receptor expression. J. Biol. Chem. 281, 20650–20659.

    • Crossref
    • PubMed
    • Export Citation
  • Béreau, M., Anheim, M., Chanson, J.-B., Tio, G., Echaniz-Laguna, A., Depienne, C., Collongues, N., and de Sèze, J. (2015). Dalfampridine in hereditary spastic paraplegia: a prospective, open study. J. Neurol. 262, 1285–1288.

    • Crossref
    • PubMed
    • Export Citation
  • Bertolucci, F., Di Martino, S., Orsucci, D., Ienco, E.C., Siciliano, G., Rossi, B., Mancuso, M., and Chisari, C. (2015). Robotic gait training improves motor skills and quality of life in hereditary spastic paraplegia. Neurorehabilitation 36, 93–99.

    • Crossref
    • PubMed
    • Export Citation
  • Björk, S., Hurt, C.M., Ho, V.K., and Angelotti, T. (2013). REEPs are membrane shaping adapter proteins that modulate specific G protein-coupled receptor trafficking by affecting ER cargo capacity. PLoS One 8, e76366.

    • Crossref
    • PubMed
    • Export Citation
  • Charvin, D., Cifuentes-Diaz, C., Fonknechten, N., Joshi, V., Hazan, J., Melki, J., and Betuing, S. (2003). Mutations of SPG4 are responsible for a loss of function of spastin, an abundant neuronal protein localized in the nucleus. Hum. Mol. Genet. 12, 71–78.

    • Crossref
    • PubMed
    • Export Citation
  • Eastman, S.W., Yassaee, M., and Bieniasz, P.D. (2009). A role for ubiquitin ligases and Spartin/SPG20 in lipid droplet turnover. J. Cell Biol. 184, 881–894.

    • Crossref
    • PubMed
    • Export Citation
  • Edwards, T.L., Clowes, V.E., Tsang, H.T.H., Connell, J.W., Sanderson, C.M., Luzio, J.P., and Reid, E. (2009). Endogenous spartin (SPG20) is recruited to endosomes and lipid droplets and interacts with the ubiquitin E3 ligases AIP4 and AIP5. Biochem. J. 423, 31–39.

    • Crossref
    • PubMed
    • Export Citation
  • Errico, A., Ballabio, A., and Rugarli, E.I. (2002). Spastin, the protein mutated in autosomal dominant hereditary spastic paraplegia, is involved in microtubule dynamics. Hum. Mol. Genet. 11, 153–163.

    • Crossref
    • PubMed
    • Export Citation
  • Falk, J., Rohde, M., Bekhite, M.M., Neugebauer, S., Hemmerich, P., Kiehntopf, M., Deufel, T., Hübner, C.A., and Beetz, C. (2014). Functional mutation analysis provides evidence for a role of REEP1 in lipid droplet biology. Hum. Mutat. 35, 497–504.

    • Crossref
    • PubMed
    • Export Citation
  • Fink, J.K. (2003). Advances in the hereditary spastic paraplegias. Exp. Neurol. 184, S106–S110.

    • Crossref
    • PubMed
    • Export Citation
  • Fink, J.K. (2013). Hereditary spastic paraplegia: clinico-pathologic features and emerging molecular mechanisms. Acta Neuropathol. (Berl.) 126, 307–328.

    • Crossref
    • Export Citation
  • Finsterer, J., Löscher, W., Quasthoff, S., Wanschitz, J., Auer-Grumbach, M., and Stevanin, G. (2012). Hereditary spastic paraplegias with autosomal dominant, recessive, X-linked, or maternal trait of inheritance. J. Neurol. Sci. 318, 1–18.

    • Crossref
    • PubMed
    • Export Citation
  • Fontaine, B., Davoine, C.S., Dürr, A., Paternotte, C., Feki, I., Weissenbach, J., Hazan, J., and Brice, A. (2000). A new locus for autosomal dominant pure spastic paraplegia, on chromosome 2q24-q34. Am. J. Hum. Genet. 66, 702–707.

    • Crossref
    • PubMed
    • Export Citation
  • Goizet, C., Depienne, C., Benard, G., Boukhris, A., Mundwiller, E., Solé, G., Coupry, I., Pilliod, J., Martin-Négrier, M.-L., Fedirko, E., et al. (2011). REEP1 mutations in SPG31: frequency, mutational spectrum, and potential association with mitochondrial morpho-functional dysfunction. Hum. Mutat. 32, 1118–1127.

    • Crossref
    • PubMed
    • Export Citation
  • Harding, A.E. (1993). Hereditary spastic paraplegias. Semin. Neurol. 13, 333–336.

    • Crossref
    • PubMed
    • Export Citation
  • Hashimoto, Y., Shirane, M., Matsuzaki, F., Saita, S., Ohnishi, T., and Nakayama, K.I. (2014). Protrudin regulates endoplasmic reticulum morphology and function associated with the pathogenesis of hereditary spastic paraplegia. J. Biol. Chem. 289, 12946–12961.

    • Crossref
    • PubMed
    • Export Citation
  • Hewamadduma, C., McDermott, C., Kirby, J., Grierson, A., Panayi, M., Dalton, A., Rajabally, Y., and Shaw, P. (2009). New pedigrees and novel mutation expand the phenotype of REEP1-associated hereditary spastic paraplegia (HSP). Neurogenetics 10, 105–110.

    • Crossref
    • PubMed
    • Export Citation
  • Hooper, C., Puttamadappa, S.S., Loring, Z., Shekhtman, A., and Bakowska, J.C. (2010). Spartin activates atrophin-1-interacting protein 4 (AIP4) E3 ubiquitin ligase and promotes ubiquitination of adipophilin on lipid droplets. BMC Biol. 8, 72.

    • Crossref
    • PubMed
    • Export Citation
  • Hurt, C.M., Björk, S., Ho, V.K., Gilsbach, R., Hein, L., and Angelotti, T. (2014). REEP1 and REEP2 proteins are preferentially expressed in neuronal and neuronal-like exocytotic tissues. Brain Res. 1545, 12–22.

    • Crossref
    • PubMed
    • Export Citation
  • Jia, X., Madireddy, L., Caillier, S., Santaniello, A., Esposito, F., Comi, G., Stuve, O., Zhou, Y., Taylor, B., Kilpatrick, T., et al. (2018). Genome sequencing uncovers phenocopies in primary progressive multiple sclerosis. Ann. Neurol. 84, 51–63.

    • Crossref
    • PubMed
    • Export Citation
  • Kenwrick, S., Watkins, A., and De Angelis, E. (2000). Neural cell recognition molecule L1: relating biological complexity to human disease mutations. Hum. Mol. Genet. 9, 879–886.

    • Crossref
    • PubMed
    • Export Citation
  • Lavie, J., Serrat, R., Bellance, N., Courtand, G., Dupuy, J.-W., Tesson, C., Coupry, I., Brice, A., Lacombe, D., Durr, A., et al. (2017). Mitochondrial morphology and cellular distribution are altered in SPG31 patients and are linked to DRP1 hyperphosphorylation. Hum. Mol. Genet. 26, 674–685.

    • PubMed
    • Export Citation
  • Lim, Y., Cho, I.-T., Schoel, L.J., Cho, G., and Golden, J.A. (2015). Hereditary spastic paraplegia-linked REEP1 modulates endoplasmic reticulum/mitochondria contacts. Ann. Neurol. 78, 679–696.

    • Crossref
    • PubMed
    • Export Citation
  • Liu, S.G., Che, F.Y., Heng, X.Y., Li, F.F., Huang, S.Z., Lu, D.G., Hou, S.J., Liu, S.E., Wang, Q., Wang, H.P., et al. (2009). Clinical and genetic study of a novel mutation in the REEP1 gene. Synapse 63, 201–205.

    • Crossref
    • PubMed
    • Export Citation
  • McCorquodale, D.S., Ozomaro, U., Huang, J., Montenegro, G., Kushman, A., Citrigno, L., Price, J., Speziani, F., Pericak-Vance, M.A., and Züchner, S. (2011). Mutation screening of spastin, atlastin, and REEP1 in hereditary spastic paraplegia. Clin. Genet. 79, 523–530.

    • Crossref
    • PubMed
    • Export Citation
  • McDermott, C., White, K., Bushby, K., and Shaw, P. (2000). Hereditary spastic paraparesis: a review of new developments. J. Neurol. Neurosurg. Psychiatry 69, 150–160.

    • Crossref
    • PubMed
    • Export Citation
  • McMonagle, P., Webb, S., and Hutchinson, M. (2002). The prevalence of “pure” autosomal dominant hereditary spastic paraparesis in the island of Ireland. J. Neurol. Neurosurg. Psychiatry 72, 43–46.

    • Crossref
    • PubMed
    • Export Citation
  • Miura, S., Shibata, H., Kida, H., Noda, K., Tomiyasu, K., Yamamoto, K., Iwaki, A., Ayabe, M., Aizawa, H., Taniwaki, T., et al. (2008). Hereditary motor and sensory neuropathy with proximal dominancy in the lower extremities, urinary disturbance, and paroxysmal dry cough. J. Neurol. Sci. 273, 88–92.

    • Crossref
    • PubMed
    • Export Citation
  • Mondrup, K. and Pedersen, E. (1984). The clinical effect of the GABA-agonist, progabide, on spasticity. Acta Neurol. Scand. 69, 200–206.

    • Crossref
    • PubMed
    • Export Citation
  • Park, S.H., Zhu, P.-P., Parker, R.L., and Blackstone, C. (2010). Hereditary spastic paraplegia proteins REEP1, spastin, and atlastin-1 coordinate microtubule interactions with the tubular ER network. J. Clin. Invest. 120, 1097–1110.

    • Crossref
    • PubMed
    • Export Citation
  • Pease, W.S. (1998). Therapeutic electrical stimulation for spasticity: quantitative gait analysis. Am. J. Phys. Med. Rehabil. 77, 351–355.

    • Crossref
    • PubMed
    • Export Citation
  • Reid, E., Kloos, M., Ashley-Koch, A., Hughes, L., Bevan, S., Svenson, I.K., Graham, F.L., Gaskell, P.C., Dearlove, A., Pericak-Vance, M.A., et al. (2002). A kinesin heavy chain (KIF5A) mutation in hereditary spastic paraplegia (SPG10). Am. J. Hum. Genet. 71, 1189–1194.

    • Crossref
    • PubMed
    • Export Citation
  • Renvoisé, B., Malone, B., Falgairolle, M., Munasinghe, J., Stadler, J., Sibilla, C., Park, S.H., and Blackstone, C. (2016). Reep1 null mice reveal a converging role for hereditary spastic paraplegia proteins in lipid droplet regulation. Hum. Mol. Genet. 25, 5111–5125.

    • PubMed
    • Export Citation
  • Richard, S., Lavie, J., Banneau, G., Voirand, N., Lavandier, K., and Debouverie, M. (2017). Hereditary spastic paraplegia due to a novel mutation of the REEP1 gene: case report and literature review. Medicine (Baltimore) 96, e5911.

    • Crossref
    • PubMed
    • Export Citation
  • Saito, H., Kubota, M., Roberts, R.W., Chi, Q., and Matsunami, H. (2004). RTP family members induce functional expression of mammalian odorant receptors. Cell 119, 679–691.

    • Crossref
    • PubMed
    • Export Citation
  • Schlang, K.J., Arning, L., Epplen, J.T., and Stemmler, S. (2008). Autosomal dominant hereditary spastic paraplegia: novel mutations in the REEP1 gene (SPG31). BMC Med. Genet. 9, 71.

    • Crossref
    • PubMed
    • Export Citation
  • Schottmann, G., Seelow, D., Seifert, F., Morales-Gonzalez, S., Gill, E., von Au, K., von Moers, A., Stenzel, W., and Schuelke, M. (2015). Recessive REEP1 mutation is associated with congenital axonal neuropathy and diaphragmatic palsy. Neurol. Genet. 1, e32.

    • Crossref
    • PubMed
    • Export Citation
  • Schwarz, G.A. and Liu, C.N. (1956). Hereditary (familial) spastic paraplegia; further clinical and pathologic observations. AMA Arch. Neurol. Psychiatry 75, 144–162.

    • Crossref
    • PubMed
    • Export Citation
  • Sedel, F., Fontaine, B., Saudubray, J.M., and Lyon-Caen, O. (2007). Hereditary spastic paraparesis in adults associated with inborn errors of metabolism: a diagnostic approach. J. Inherit. Metab. Dis. 30, 855–864.

    • Crossref
    • PubMed
    • Export Citation
  • Sills, G.J. (2006). The mechanisms of action of gabapentin and pregabalin. Curr. Opin. Pharmacol. 6, 108–113.

    • Crossref
    • PubMed
    • Export Citation
  • Silva, M.C., Coutinho, P., Pinheiro, C.D., Neves, J.M., and Serrano, P. (1997). Hereditary ataxias and spastic paraplegias: methodological aspects of a prevalence study in Portugal. J. Clin. Epidemiol. 50, 1377–1384.

    • Crossref
    • PubMed
    • Export Citation
  • de Souza, P.V.S., de Rezende Pinto, W.B.V., de Rezende Batistella, G.N., Bortholin, T., and Oliveira, A.S.B. (2016). Hereditary spastic paraplegia: clinical and genetic hallmarks. Cerebellum (Lond.).

  • Stevens, S.J.C., Blom, E.W., Siegelaer, I.T.J., and Smeets, E.E.J.G.L. (2015). A recurrent deletion syndrome at chromosome bands 2p11.2-2p12 flanked by segmental duplications at the breakpoints and including REEP1. Eur. J. Hum. Genet. 23, 543–546.

    • Crossref
    • PubMed
    • Export Citation
  • Tsaousidou, M.K., Ouahchi, K., Warner, T.T., Yang, Y., Simpson, M.A., Laing, N.G., Wilkinson, P.A., Madrid, R.E., Patel, H., Hentati, F., et al. (2008). Sequence alterations within CYP7B1 implicate defective cholesterol homeostasis in motor-neuron degeneration. Am. J. Hum. Genet. 82, 510–515.

    • Crossref
    • PubMed
    • Export Citation
  • Tzschach, A., Graul-Neumann, L.M., Konrat, K., Richter, R., Ebert, G., Ullmann, R., and Neitzel, H. (2009). Interstitial deletion 2p11.2-p12: report of a patient with mental retardation and review of the literature. Am. J. Med. Genet. A. 149A, 242–245.

    • Crossref
    • PubMed
    • Export Citation
  • Ulengin, I., Park, J.J., and Lee, T.H. (2015). ER network formation and membrane fusion by atlastin1/SPG3A disease variants. Mol. Biol. Cell 26, 1616–1628.

    • Crossref
    • PubMed
    • Export Citation
  • Vanderver, A., Tonduti, D., Auerbach, S., Schmidt, J.L., Parikh, S., Gowans, G.C., Jackson, K.E., Brock, P.L., Patterson, M., Nehrebecky, M., et al. (2012). Neurotransmitter abnormalities and response to supplementation in SPG11. Mol. Genet. Metab. 107, 229–233.

    • Crossref
    • PubMed
    • Export Citation
  • Wijemanne, S. and Jankovic, J. (2015). Dopa-responsive dystonia—clinical and genetic heterogeneity. Nat. Rev. Neurol. 11, 414–424.

    • Crossref
    • PubMed
    • Export Citation
  • Yalçın, B., Zhao, L., Stofanko, M., O’Sullivan, N.C., Kang, Z.H., Roost, A., Thomas, M.R., Zaessinger, S., Blard, O., Patto, A.L., et al. (2017). Modeling of axonal endoplasmic reticulum network by spastic paraplegia proteins. eLife 6, pii: e23882.

    • Crossref
    • Export Citation
  • Zhang, Y., Roxburgh, R., Huang, L., Parsons, J., and Davies, T.C. (2014). The effect of hydrotherapy treatment on gait characteristics of hereditary spastic paraparesis patients. Gait Posture 39, 1074–1079.

    • Crossref
    • PubMed
    • Export Citation
  • Zhao, X., Alvarado, D., Rainier, S., Lemons, R., Hedera, P., Weber, C.H., Tukel, T., Apak, M., Heiman-Patterson, T., Ming, L., et al. (2001). Mutations in a newly identified GTPase gene cause autosomal dominant hereditary spastic paraplegia. Nat. Genet. 29, 326–331.

    • Crossref
    • Export Citation
  • Zhao, C., Lou, Y., Wang, Y., Wang, D., Tang, L., Gao, X., Zhang, K., Xu, W., Liu, T., and Xiao, J. (2019). A gene expression signature-based nomogram model in prediction of breast cancer bone metastases. Cancer Med. 8, 200–208.

    • Crossref
    • PubMed
    • Export Citation
  • Zheng, P., Chen, Q., Tian, X., Qian, N., Chai, P., Liu, B., Hu, J., Blackstone, C., Zhu, D., Teng, J., et al. (2018). DNA damage triggers tubular endoplasmic reticulum extension to promote apoptosis by facilitating ER-mitochondria signaling. Cell Res. 28, 833–854.

    • Crossref
    • PubMed
    • Export Citation
  • Züchner, S., Kail, M.E., Nance, M.A., Gaskell, P.C., Svenson, I.K., Marchuk, D.A., Pericak-Vance, M.A., and Ashley-Koch, A.E. (2006a). A new locus for dominant hereditary spastic paraplegia maps to chromosome 2p12. Neurogenetics 7, 127–129.

    • Crossref
    • Export Citation
  • Züchner, S., Kail, M.E., Nance, M.A., Gaskell, P.C., Svenson, I.K., Marchuk, D.A., Pericak-Vance, M.A., and Ashley-Koch, A.E. (2006b). A new locus for dominant hereditary spastic paraplegia maps to chromosome 2p12. Neurogenetics 7, 127–129.

    • Crossref
    • Export Citation
  • Züchner, S., Wang, G., Tran-Viet, K.-N., Nance, M.A., Gaskell, P.C., Vance, J.M., Ashley-Koch, A.E., and Pericak-Vance, M.A. (2006c). Mutations in the novel mitochondrial protein REEP1 cause hereditary spastic paraplegia type 31. Am. J. Hum. Genet. 79, 365–369.

    • Crossref
    • Export Citation
Purchase article
Get instant unlimited access to the article.
$42.00
Log in
Already have access? Please log in.


or
Log in with your institution

Journal + Issues

Search