An application of a data assimilation method based on the diffusion stochastic process theory using altimetry data in Atlantic

Konstantin P. Belyaev 1 , Andrey A. Kuleshov 2 , and Clemente A. S. Tanajura 3
  • 1 Shirshov Institute of Oceanology, Moscow, Russia. Oceanographic Modelling and Observational Network (REMO), Federal University of Bahia (UFBA), Salvador, Brazil
  • 2 Keldysh Institute of Applied Mathematics of the RAS, Moscow, Russia
  • 3 Oceanographic Modelling and Observational Network (REMO), Federal University of Bahia (UFBA), Salvador, Brazil. Department of Earth and Environmental Physics, Physics Institute, Federal University of Bahia (UFBA), Salvador, Brazil. Department of Ocean Sciences, University of California, Santa Cruz (UCSC), USA
Konstantin P. Belyaev, Andrey A. Kuleshov and Clemente A. S. Tanajura


A data assimilation (DA) method based on the application of the diffusion stochastic process theory, particularly, of the Fokker-Planck equation, is considered. The method was introduced in the previous works; however, it is substantially modified and extended to the multivariate case in the current study. For the first time, the method is here applied to the assimilation of sea surface height anomalies (SSHA) into the Hybrid Coordinate Ocean Model (HYCOM) over the Atlantic Ocean. The impact of assimilation of SSHA is investigated and compared with the assimilation by an Ensemble Optimal Interpolation method (EnOI). The time series of the analyses produced by both assimilation methods are evaluated against the results from a free model run without assimilation. This study shows that the proposed assimilation technique has some advantages in comparison with EnOI analysis. Particularly, it is shown that it provides slightly smaller error and is computationally efficient. The method may be applied to assimilate other data such as observed sea surface temperature and vertical profiles of temperature and salinity.

  • [1]

    V. I. Agoshkov, E. I. Parmuzin, and V. P. Shutyaev, Observational data assimilation in the problem of Black Sea circulation and sensitivity analysis of its solution. Izv. Atmos. Ocean. Phys. 49 (2013), No. 6, 592-602.

    • Crossref
    • Export Citation
  • [2]

    K. Belyaev, C. A. S.Tanajura, and J. J. O’Brien, A data assimilation method used with ocean circulation model and its application to the tropical Atlantic. Appl Math. Modelling25 (2001), 655-670.

    • Crossref
    • Export Citation
  • [3]

    K. Belyaev, D. Mueller, and C. A. S. Tanajura, A data assimilation method and its application to analysis of the ocean state in the tropical Pacific. Oceanology45 (2005), 26-36.

  • [4]

    K. Belyaev, C. A. S. Tanajura, and N. Tuchkova, Comparison of Argo drifter data assimilation methods for hydrodynamic models. Oceanology52 (2012), 523-615.

  • [5]

    L. Bengtsson, On the use of a time sequence of surface pressures in four-dimensional data assimilation. Tellus32 (1980), 189-197.

  • [6]

    R. Bleck, An oceanic general circulation model framed in hybrid isopycnic-Cartesian coordinates. OceanModell. 4(2002), 55-88.

  • [7]

    R. Bleck and D. B. Boudra, Initial testing of a numerical ocean circulation model using a hybrid quasi isopycnal vertical coordinate. J. Phys. Oceanogr. 11 (1981), 755-770.

    • Crossref
    • Export Citation
  • [8]

    R. Bleck and S. G. Benjamin, Regional weather prediction with a model combining terrain-following and isentropic coordinates. Part I: Model description. Mon. Wea.Rev. 121 (1993), 1770-1785.

    • Crossref
    • Export Citation
  • [9]

    E. P. Chassignet, H. E. Hurlburt, E. J. Metzger, O. M. Smedstad, J. Cummings, G. R. Halliwell, R. Bleck, R. Baraille, A. J. Wall-craft, C. Lozano et al., US GODAE: Global Ocean Prediction with the HYbrid Coordinate Ocean Model (HYCOM). Oceanography22 (2009), 64-75.

    • Crossref
    • Export Citation
  • [10]

    S. E. Cohn, An introduction to estimation theory.J.Meteorol.Soc.Japan75 (1997), 257-288.

  • [11]

    F. Counillon and L. Bertino, High-resolution ensemble forecasting for the Gulf of Mexico eddies and fronts. OceanDyn.59 (2009), 83-95.

  • [12]

    R. Daley, Atmospheric Data Analysis. Cambridge University Press, Cambridge, 1991.

  • [13]

    N. A. Diansky, Modellingofthe Ocean Circulation and the Investigation of its Reaction on Short-and-Long Term Atmosphere Impact. Moscow, Fizmatlit, 2013 (in Russian).

  • [14]

    G. Evensen, The ensemble Kalman filter: Theoretical formulation and practical implementation. Ocean Dyn. 53 (2003), 343-367.

    • Crossref
    • Export Citation
  • [15]

    M. Ghill and P. Malanotte-Rizzoli, Data assimilation in meteorology and oceanography. Adv. Geophys. 33 (1991), 141-266.

    • Crossref
    • Export Citation
  • [16]

    R. Kalman, A new approach to linear filtering and prediction problem. Trans. AMSE, J. BasicEngrg. 82 (1960), 35-45.

  • [17]

    E. Kalnay, Atmospheric Modelling, Data Assimilation and Predictability. Cambridge University Press, Cambridge, 2003.

  • [18]

    G. I. Marchukand V. B. Zalesny, A numerical technique for geophysical data assimilation problems using Pontryagin’s principle and splitting-up method. Russ. J. Numer Anal. Math. Modelling8 (1993), No. 4, 311-326.

  • [19]

    P. R. Oke and P. Sakov, Representation error of oceanic observations for data assimilation.J. Atmos. Oceanic Technol. 25 (2007), 1004-1017.

  • [20]

    P. R. Oke, G. B. Brassington, D. A. Griffin, and A. Schiller, The BLUElink ocean data assimilation system. OceanModell. 21(2008), 46-70.

  • [21]

    V. V. Penenko and N. N. Obraztsov, A variational method for the adaptation of the fields of Meteorological variables. Meteorol. Hydrol. (1976), No. 11, 3-16.

  • [22]

    P. Sakov, F. Counillon, L. Bertino, K. A. Lisaeter, P. R. Oke, and A. Korablev, TOPAZ4: An ocean sea-ice data assimilation system for the North Atlantic and Arctic. Ocean Sci. 8 (2012), 633-656.

    • Crossref
    • Export Citation
  • [23]

    A. A. Samarsky, The Theory of Difference Schemes. CRC Press, 2001.

  • [24]

    A. Schiller and G. Brassington (Eds.), Operational Oceanography in the 21st Century. Springer, NewYork, 2011.

  • [25]

    N. Smith, Perspectives from the Global Ocean Data Assimilation Experiment (Eds. E. Chassignet and J. Verron). Ocean Weather Forecasting, Springer, 2006, pp. 1-17.

    • Crossref
    • Export Citation
  • [26]

    O. Talagrand and P. Courtier, Variational assimilation of meteorological observations with the adjoint vorticity equation I: Theory. Quart. J. Roy. Meteor Soc. 113 (1987), 1311-1328.

    • Crossref
    • Export Citation
  • [27]

    C. A. S. Tanajura and L. N. Lima, Assimilation of sea surface height anomalies into HYCOM with an optimal interpolation scheme over the Atlantic ocean Metarea V. Geophys. Bras. J. 31 (2013), 257-270.

    • Crossref
    • Export Citation
  • [28]

    C. A. S. Tanajura and K. Belyaev, A sequential data assimilation method based on the properties of diffusion-type process. Appl. Math. Modelling33 (2009), 2165-2174.

    • Crossref
    • Export Citation
  • [29]

    C. A. S. Tanajura and K. Belyaev, On the oceanic impact of data assimilation method in a coupled ocean-land-atmosphere model. Ocean Dyn. 52 (2002), 123-132.

    • Crossref
    • Export Citation
  • [30]

    W. M.Wonham, Stochastic Problems in optimal control. IEEEConv. Record, Part 11 (1963), 114-124.

  • [31]

    J.Xie, F. Counillon, J. Zhu, and L. Bertino, An eddy-resolving tidal-driven model in China South Sea assimilation along track satellite data using EnOI. Ocean Sci. 7 (2011), 609-627.

    • Crossref
    • Export Citation
  • [32]

    V. B. Zalesny and A. S. Rusakov, Numerical algorithm of data assimilation based on splitting and adjoint equation methods. Russ. J. Numer. Anal. Math. Modelling22 (2007), No. 2,199-219.

Purchase article
Get instant unlimited access to the article.
Log in
Already have access? Please log in.

Log in with your institution

Journal + Issues