Engineered RNA Nanodesigns for Applications in RNA Nanotechnology

Kirill A. Afonin 1 , Brian Lindsay 1 , and Bruce A. Shapiro 1
  • 1 Center for Cancer Research Nanobiology Program, National Cancer Institute, Frederick, MD 21702, USA

Abstract

Nucleic acids have emerged as an extremely promising platform for nanotechnological applications because of their unique biochemical properties and functions. RNA, in particular, is characterized by relatively high thermal stability, diverse structural flexibility, and its capacity to perform a variety of functions in nature. These properties make RNA a valuable platform for bio-nanotechnology, specifically RNA Nanotechnology, that can create de novo nanostructures with unique functionalities through the design, integration, and re-engineering of powerful mechanisms based on a variety of existing RNA structures and their fundamental biochemical properties. This review highlights the principles that underlie the rational design of RNA nanostructures, describes the main strategies used to construct self-assembling nanoparticles, and discusses the challenges and possibilities facing the application of RNA Nanotechnology in the future.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Garibotti, A.V., Liao, S. & Seeman, N.C. A simple DNA-based translation system. Nano letters 7, 480-483 (2007).

  • Seeman, N.C. Structural DNA nanotechnology: an overview. Methods in molecular biology 303, 143-166 (2005).

  • Lin, C., Liu, Y. & Yan, H. Designer DNA nanoarchitectures. Biochemistry 48, 1663-1674 (2009).

  • Seeman, N.C. Nanomaterials based on DNA. Annual review of biochemistry 79, 65-87 (2010).

  • Feldkamp, U. & Niemeyer, C.M. Rational design of DNA nanoarchitectures. Angewandte Chemie 45, 1856-1876 (2006).

  • Lin, C., Liu, Y., Rinker, S. & Yan, H. DNA tile based self-assembly: building complex nanoarchitectures. Chemphyschem 7, 1641-1647 (2006).

  • Chen, J.H. & Seeman, N.C. The electrophoretic properties of a DNA cube and its substructure catenanes. Electrophoresis 12, 607-611 (1991).

  • Andersen, F.F. et al. Assembly and structural analysis of a covalently closed nano-scale DNA cage. Nucleic acids research 36, 1113-1119 (2008).

  • Brucale, M. et al. Characterization and modulation of the hierarchical self-assembly of nanostructured DNA tiles into supramolecular polymers. Organic & biomolecular chemistry 4, 3427-3434 (2006).

  • Erben, C.M., Goodman, R.P. & Turberfield, A.J. A selfassembled DNA bipyramid. Journal of the American Chemical Society 129, 6992-6993 (2007).

  • Goodman, R.P. et al. Reconfigurable, braced, threedimensional DNA nanostructures. Nature nanotechnology 3, 93-96 (2008).

  • He, Y. et al. Hierarchical self-assembly of DNA into symmetric supramolecular polyhedra. Nature 452, 198-201 (2008).

  • Licata, N.A. & Tkachenko, A.V. Self-assembling DNA-caged particles: nanoblocks for hierarchical self-assembly. Physical review 79, 011404 (2009).

  • Shih, W.M., Quispe, J.D. & Joyce, G.F. A 1.7-kilobase singlestranded DNA that folds into a nanoscale octahedron. Nature 427, 618-621 (2004).

  • Zhang, S. & Seeman, N.C. Symmetric Holliday junction crossover isomers. Journal of molecular biology 238, 658- 668 (1994).

  • Zimmermann, J., Cebulla, M.P., Monninghoff, S. & von Kiedrowski, G. Self-assembly of a DNA dodecahedron from 20 trisoligonucleotides with C(3h) linkers. Angewandte Chemie 47, 3626-3630 (2008).

  • Chen, J.H. & Seeman, N.C. Synthesis from DNA of a molecule with the connectivity of a cube. Nature 350, 631- 633 (1991).

  • Aldaye, F.A., Palmer, A.L. & Sleiman, H.F. Assembling materials with DNA as the guide. Science 321, 1795-1799 (2008).

  • Erben, C.M., Goodman, R.P. & Turberfield, A.J. Singlemolecule protein encapsulation in a rigid DNA cage. Angewandte Chemie 45, 7414-7417 (2006).

  • Bhatia, D. et al. Icosahedral DNA nanocapsules by modular assembly. Angewandte Chemie (International ed 48, 4134- 4137 (2009).

  • Yang, H. et al. Metal-nucleic acid cages. Nature chemistry 1, 390-396 (2009).

  • Lee, H. et al. Molecularly self-assembled nucleic acid nanoparticles for targeted in vivo siRNA delivery. Nature nanotechnology 7, 389-393 (2012).

  • Rothemund, P.W. Folding DNA to create nanoscale shapes and patterns. Nature 440, 297-302 (2006).

  • Andersen, E.S. et al. DNA origami design of dolphin-shaped structures with flexible tails. ACS nano 2, 1213-1218 (2008).

  • Maune, H.T. et al. Self-assembly of carbon nanotubes into two-dimensional geometries using DNA origami templates. Nature nanotechnology 5, 61-66 (2010).

  • Voigt, N.V. et al. Single-molecule chemical reactions on DNA origami. Nature nanotechnology 5, 200-203 (2010).

  • Pal, S., Deng, Z., Ding, B., Yan, H. & Liu, Y. DNA-origamidirected self-assembly of discrete silver-nanoparticle architectures. Angewandte Chemie 49, 2700-2704 (2010).

  • Kuzuya, A. et al. Programmed nanopatterning of organic/ inorganic nanoparticles using nanometer-scale wells embedded in a DNA origami scaffold. Small 6, 2664-2667 (2010).

  • Ke, Y. et al. Scaffolded DNA Origami of a DNA Tetrahedron Molecular Container. Nano Lett (2009).

  • Andersen, E.S. et al. Self-assembly of a nanoscale DNA box with a controllable lid. Nature 459, 73-76 (2009).

  • Zadegan, R.M. et al. Construction of a 4 Zeptoliters Switchable 3D DNA Box Origami. ACS nano DOI: 10.1021/ nn303767b (2012).

  • Douglas, S.M., Bachelet, I. & Church, G.M. A logic-gated nanorobot for targeted transport of molecular payloads. Science 335, 831-834 (2012).

  • Dietz, H., Douglas, S.M. & Shih, W.M. Folding DNA into twisted and curved nanoscale shapes. Science 325, 725- 730 (2009).

  • Liedl, T., Hogberg, B., Tytell, J., Ingber, D.E. & Shih, W.M. Self-assembly of three-dimensional prestressed tensegrity structures from DNA. Nature nanotechnology 5, 520-524 (2010).

  • Kuzyk, A. et al. DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response. Nature 483, 311-314 (2012).

  • Elghanian, R., Storhoff, J.J., Mucic, R.C., Letsinger, R.L. & Mirkin, C.A. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 277, 1078-1081 (1997).

  • Mirkin, C.A., Letsinger, R.L., Mucic, R.C. & Storhoff, J.J. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382, 607-609 (1996).

  • Mirkin, C.A. Programming the assembly of two- and threedimensional architectures with DNA and nanoscale inorganic building blocks. Inorganic chemistry 39, 2258-2272 (2000).

  • Lin, C., Liu, Y. & Yan, H. Designer DNA Nanoarchitectures (dagger). Biochemistry (2009).

  • Douglas, S.M. et al. Self-assembly of DNA into nanoscale three-dimensional shapes. Nature 459, 414-418 (2009).

  • Pinheiro, A.V., Han, D., Shih, W.M. & Yan, H. Challenges and opportunities for structural DNA nanotechnology. Nature nanotechnology 6, 763-772 (2011).

  • Guo, P. The emerging field of RNA nanotechnology. Nature nanotechnology 5, 833-842 (2010).

  • Chworos, A. et al. Building programmable jigsaw puzzles with RNA. Science (New York, N.Y 306, 2068-2072 (2004).

  • Westhof, E. & Massire, C. Structural biology. Evolution of RNA architecture. Science (New York, N.Y 306, 62-63 (2004).

  • Leontis, N.B., Lescoute, A. & Westhof, E. The building blocks and motifs of RNA architecture. Current opinion in structural biology 16, 279-287 (2006).

  • Leontis, N.B. & Westhof, E. Analysis of RNA motifs. Current opinion in structural biology 13, 300-308 (2003).

  • Delebecque, C.J., Lindner, A.B., Silver, P.A. & Aldaye, F.A. Organization of intracellular reactions with rationally designed RNA assemblies. Science 333, 470-474 (2011).

  • Rodrigo, G., Landrain, T.E. & Jaramillo, A. De novo automated design of small RNA circuits for engineering synthetic riboregulation in living cells. Proceedings of the National Academy of Sciences of the United States of America 109, 15271-15276 (2012).

  • Gallivan, J.P. Toward reprogramming bacteria with small molecules and RNA. Current opinion in chemical biology 11, 612-619 (2007).

  • Seshachar, B.R. & Dass, C.M. Evidence for the conversion of desoxyribonucleic acid (DNA) to ribonucleic acid (RNA) in Epistylis articulata From. (Ciliata: Peritricha). Experimental cell research 5, 248-250 (1953).

  • Dounce, A.L. Nucleic acid template hypotheses. Nature 172, 541 (1953).

  • Geiduschek, E.P. & Haselkorn, R. Messenger RNA. Annual review of biochemistry 38, 647-676 (1969).

  • Crick, F.H. The origin of the genetic code. Journal of molecular biology 38, 367-379 (1968).

  • Lacey, J.C., Jr. & Pruitt, K.M. Origin of the genetic code. Nature 223, 799-804 (1969).

  • Kruger, K. et al. Self-splicing RNA: autoexcision and autocyclization of the ribosomal RNA intervening sequence of Tetrahymena. Cell 31, 147-157 (1982).

  • Guerrier-Takada, C., Gardiner, K., Marsh, T., Pace, N. & Altman, S. The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell 35, 849-857 (1983).

  • Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806-811 (1998).

  • Grabow, W.W. et al. RNA nanotechnology in nanomedicine. Nanomedicine and Drug Delivery 1, 208-221 (2012).

  • Jaeger, L. & Chworos, A. The architectonics of programmable RNA and DNA nanostructures. Current opinion in structural biology 16, 531-543 (2006).

  • Bramsen, J.B. & Kjems, J. Development of Therapeutic- Grade Small Interfering RNAs by Chemical Engineering. Frontiers in genetics 3, 154 (2012).

  • Krieg, A.M. Is RNAi dead? Mol Ther 19, 1001-1002 (2011).

  • Chen, J. & Xie, J. Progress on RNAi-based molecular medicines. International journal of nanomedicine 7, 3971- 3980 (2012).

  • Win, M.N. & Smolke, C.D. A modular and extensible RNAbased gene-regulatory platform for engineering cellular function. Proceedings of the National Academy of Sciences of the United States of America 104, 14283-14288 (2007).

  • Afonin, K.A., Danilov, E.O., Novikova, I.V. & Leontis, N.B. TokenRNA: a new type of sequence-specific, labelfree fluorescent biosensor for folded RNA molecules. Chembiochem 9, 1902-1905 (2008).

  • Stojanovic, M.N. & Kolpashchikov, D.M. Modular aptameric sensors. Journal of the American Chemical Society 126, 9266-9270 (2004).

  • Pfleger, B.F., Pitera, D.J., Smolke, C.D. & Keasling, J.D. Combinatorial engineering of intergenic regions in operons tunes expression of multiple genes. Nature biotechnology 24, 1027-1032 (2006).

  • Callura, J.M., Dwyer, D.J., Isaacs, F.J., Cantor, C.R. & Collins, J.J. Tracking, tuning, and terminating microbial physiology using synthetic riboregulators. Proceedings of the National Academy of Sciences of the United States of America 107, 15898-15903 (2010).

  • Lucks, J.B., Qi, L., Mutalik, V.K., Wang, D. & Arkin, A.P. Versatile RNA-sensing transcriptional regulators for engineering genetic networks. Proceedings of the National Academy of Sciences of the United States of America 108, 8617-8622 (2010).

  • Purnick, P.E. & Weiss, R. The second wave of synthetic biology: from modules to systems. Nature reviews 10, 410- 422 (2009).

  • Rinaudo, K. et al. A universal RNAi-based logic evaluator that operates in mammalian cells. Nature biotechnology 25, 795- 801 (2007).

  • Davis, J.H. et al. RNA helical packing in solution: NMR structure of a 30 kDa GAAA tetraloop-receptor complex. Journal of molecular biology 351, 371-382 (2005).

  • Afonin, K.A. & Leontis, N.B. Generating new specific RNA interaction interfaces using C-loops. Journal of the American Chemical Society 128, 16131-16137 (2006).

  • Yingling, Y.G. & Shapiro, B.A. Computational design of an RNA hexagonal nanoring and an RNA nanotube. Nano letters 7, 2328-2334 (2007).

  • Geary, C., Baudrey, S. & Jaeger, L. Comprehensive features of natural and in vitro selected GNRA tetraloop-binding receptors. Nucleic acids research 36, 1138-1152 (2008).

  • Geary, C., Chworos, A. & Jaeger, L. Promoting RNA helical stacking via A-minor junctions. Nucleic acids research 39, 1066-1080 (2011).

  • Shu, Y., Cinier, M., Shu, D. & Guo, P. Assembly of multifunctional phi29 pRNA nanoparticles for specific delivery of siRNA and other therapeutics to targeted cells. Methods 54, 204-214 (2011).

  • Afonin, K.A., Lin, Y.P., Calkins, E.R. & Jaeger, L. Attenuation of loop-receptor interactions with pseudoknot formation. Nucleic acids research 40, 2168-2180 (2012).

  • Grabow, W.W., Zhuang, Z., Swank, Z.N., Shea, J.E. & Jaeger, L. The Right Angle (RA) Motif: A Prevalent Ribosomal RNA Structural Pattern Found in Group I Introns. Journal of molecular biology 424, 54-67 (2012).

  • Tuerk, C. & Gold, L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science (New York, N.Y 249, 505-510 (1990).

  • Ellington, A.D. & Szostak, J.W. In vitro selection of RNA molecules that bind specific ligands. Nature 346, 818-822 (1990).

  • Afonin, K.A., Cieply, D.J. & Leontis, N.B. Specific RNA selfassembly with minimal paranemic motifs. Journal of the American Chemical Society 130, 93-102 (2008).

  • Breaker, R.R. Engineered allosteric ribozymes as biosensor components. Current opinion in biotechnology 13, 31-39 (2002).

  • Jaschke, A. Artificial ribozymes and deoxyribozymes. Current opinion in structural biology 11, 321-326 (2001).

  • Nimjee, S.M., Rusconi, C.P. & Sullenger, B.A. Aptamers: an emerging class of therapeutics. Annual review of medicine 56, 555-583 (2005).

  • Xiao, Z. & Farokhzad, O.C. Aptamer-functionalized nanoparticles for medical applications: challenges and opportunities. ACS nano 6, 3670-3676 (2012).

  • Thiel, K.W. & Giangrande, P.H. Therapeutic applications of DNA and RNA aptamers. Oligonucleotides 19, 209-222 (2009).

  • Tucker, B.J. & Breaker, R.R. Riboswitches as versatile gene control elements. Current opinion in structural biology 15, 342-348 (2005).

  • Breaker, R.R. Prospects for riboswitch discovery and analysis. Molecular cell 43, 867-879 (2011).

  • Pecot, C.V., Calin, G.A., Coleman, R.L., Lopez- Berestein, G. & Sood, A.K. RNA interference in the clinic: challenges and future directions. Nat Rev Cancer 11, 59-67 (2011).

  • Petrocca, F. & Lieberman, J. Promise and challenge of RNA interference-based therapy for cancer. J Clin Oncol 29, 747- 754 (2011).

  • Davis, M.E. et al. Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature 464, 1067-1070 (2010).

  • Kim, D.H. et al. Synthetic dsRNA Dicer substrates enhance RNAi potency and efficacy. Nature biotechnology 23, 222- 226 (2005).

  • Severcan, I. et al. A polyhedron made of tRNAs. Nature chemistry 2, 772-779 (2010).

  • Bates, A.D. et al. Construction and characterization of a gold nanoparticle wire assembled using Mg2+-dependent RNARNA interactions. Nano letters 6, 445-448 (2006).

  • Khaled, A., Guo, S., Li, F. & Guo, P. Controllable self-assembly of nanoparticles for specific delivery of multiple therapeutic molecules to cancer cells using RNA nanotechnology. Nano letters 5, 1797-1808 (2005).

  • Ohno, H. et al. Synthetic RNA-protein complex shaped like an equilateral triangle. Nature nanotechnology 6, 116-120 (2011).

  • Klein, D.J., Schmeing, T.M., Moore, P.B. & Steitz, T.A. The kink-turn: a new RNA secondary structure motif. The EMBO journal 20, 4214-4221 (2001).

  • Severcan, I., Geary, C., Verzemnieks, E., Chworos, A. & Jaeger, L. Square-shaped RNA particles from different RNA folds. Nano letters 9, 1270-1277 (2009).

  • Lescoute, A. & Westhof, E. Topology of three-way junctions in folded RNAs. RNA (New York, N.Y 12, 83-93 (2006).

  • Laing, C., Jung, S., Iqbal, A. & Schlick, T. Tertiary motifs revealed in analyses of higher-order RNA junctions. Journal of molecular biology 393, 67-82 (2009).

  • Nasalean, L., Baudrey, S., Leontis, N.B. & Jaeger, L. Controlling RNA self-assembly to form filaments. Nucleic acids research 34, 1381-1392 (2006).

  • Afonin, K.A. et al. Co-transcriptional Assembly of Chemically Modified RNA Nanoparticles Functionalized with siRNAs. Nano letters (2012).

  • Grabow, W.W. et al. Self-assembling RNA nanorings based on RNAI/II inverse kissing complexes. Nano letters 11, 878- 887 (2011).

  • Afonin, K.A. et al. In vitro assembly of cubic RNA-based scaffolds designed in silico. Nature nanotechnology 5, 676- 682 (2010).

  • Dibrov, S.M., McLean, J., Parsons, J. & Hermann, T. Selfassembling RNA square. Proceedings of the National Academy of Sciences of the United States of America 108, 6405-6408 (2011).

  • Afonin, K.A. et al. Self-assembly of functionalized RNA nanoparticles demonstrating potential advancements in automated nanomedicine. Nat Protoc (2011).

  • Haque, F. et al. Ultrastable synergistic tetravalent RNA nanoparticles for targeting to cancers. Nano today 7, 245- 257 (2012).

  • Gugliotti, L.A., Feldheim, D.L. & Eaton, B.E. RNA-mediated metal-metal bond formation in the synthesis of hexagonal palladium nanoparticles. Science 304, 850-852 (2004).

  • Petros, R.A. & DeSimone, J.M. Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug Discov 9, 615-627 (2010).

  • Shukla, G.C. et al. A Boost for the Emerging Field of RNA Nanotechnology. ACS nano 5, 3405-3418 (2011).

  • Ferrari, M. Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer 5, 161-171 (2005).

  • Farokhzad, O.C. & Langer, R. Impact of nanotechnology on drug delivery. ACS nano 3, 16-20 (2009).

  • Westhof, E., Masquida, B. & Jaeger, L. RNA tectonics: towards RNA design. Folding & design 1, R78-88 (1996).

  • Hansma, H.G., Oroudjev, E., Baudrey, S. & Jaeger, L. TectoRNA and ‘kissing-loop’ RNA: atomic force microscopy of self-assembling RNA structures. Journal of microscopy 212, 273-279 (2003).

  • Jaeger, L., Westhof, E. & Leontis, N.B. TectoRNA: modular assembly units for the construction of RNA nano-objects. Nucleic acids research 29, 455-463 (2001).

  • Shu, D., Huang, L.P., Hoeprich, S. & Guo, P. Construction of phi29 DNA-packaging RNA monomers, dimers, and trimers with variable sizes and shapes as potential parts for nanodevices. Journal of nanoscience and nanotechnology 3, 295-302 (2003).

  • Guo, S., Tschammer, N., Mohammed, S. & Guo, P. Specific delivery of therapeutic RNAs to cancer cells via the dimerization mechanism of phi29 motor pRNA. Human gene therapy 16, 1097-1109 (2005).

  • Hoeprich, S. & Guo, P. Computer modeling of threedimensional structure of DNA-packaging RNA (pRNA) monomer, dimer, and hexamer of Phi29 DNA packaging motor. The Journal of biological chemistry 277, 20794- 20803 (2002).

  • Simpson, A.A. et al. Structure of the bacteriophage phi29 DNA packaging motor. Nature 408, 745-750 (2000).

  • Shu, D., Zhang, H., Jin, J. & Guo, P. Counting of six pRNAs of phi29 DNA-packaging motor with customized single-molecule dual-view system. The EMBO journal 26, 527-537 (2007).

  • Guo, P., Haque, F., Hallahan, B., Reif, R. & Li, H. Uniqueness, advantages, challenges, solutions, and perspectives in therapeutics applying RNA nanotechnology. Nucleic acid therapeutics 22, 226-245.

  • Cayrol, B. et al. A Nanostructure Made of a Bacterial Noncoding RNA. Journal of the American Chemical Society 131, 17270–17276 (2009).

  • Bindewald, E., Afonin, K., Jaeger, L. & Shapiro, B.A. Multistrand RNA secondary structure prediction and nanostructure design including pseudoknots. ACS nano 5, 9542-9551 (2011).

  • Bindewald, E., Grunewald, C., Boyle, B., O’Connor, M. & Shapiro, B.A. Computational strategies for the automated design of RNA nanoscale structures from building blocks using NanoTiler. Journal of molecular graphics & modelling 27, 299-308 (2008).

  • Shu, D., Shu, Y., Haque, F., Abdelmawla, S. & Guo, P. Thermodynamically stable RNA three-way junction for constructing multifunctional nanoparticles for delivery of therapeutics. Nature nanotechnology 6, 658-667 (2011).

  • Bindewald, E., Hayes, R., Yingling, Y.G., Kasprzak, W. & Shapiro, B.A. RNAJunction: a database of RNA junctions and kissing loops for three-dimensional structural analysis and nanodesign. Nucleic acids research 36, D392-397 (2008).

  • Berman, H.M., Gelbin, A. & Westbrook, J. Nucleic acid crystallography: a view from the nucleic acid database. Progress in biophysics and molecular biology 66, 255-288 (1996).

  • Klosterman, P.S., Hendrix, D.K., Tamura, M., Holbrook, S.R. & Brenner, S.E. Three-dimensional motifs from the SCOR, structural classification of RNA database: extruded strands, base triples, tetraloops and U-turns. Nucleic acids research 32, 2342-2352 (2004).

  • Tamura, M. et al. SCOR: Structural Classification of RNA, version 2.0. Nucleic acids research 32, D182-184 (2004).

  • Jossinet, F., Ludwig, T.E. & Westhof, E. Assemble: an interactive graphical tool to analyze and build RNA architectures at the 2D and 3D levels. Bioinformatics (Oxford, England) 26, 2057-2059.

  • Martinez, H.M., Maizel, J.V., Jr. & Shapiro, B.A. RNA2D3D: a program for generating, viewing, and comparing 3-dimensional models of RNA. Journal of biomolecular structure & dynamics 25, 669-683 (2008).

  • Xia, Z., Gardner, D.P., Gutell, R.R. & Ren, P. Coarsegrained model for simulation of RNA three-dimensional structures. The journal of physical chemistry 114, 13497- 13506.

  • Pettersen, E.F. et al. UCSF Chimera--a visualization system for exploratory research and analysis. Journal of computational chemistry 25, 1605-1612 (2004).

  • Grell, L., Parkin, C., Slatest, L. & Craig, P.A. EZ-Viz, a tool for simplifying molecular viewing in PyMOL. Biochem Mol Biol Educ 34, 402-407 (2006).

  • Kamaly, N., Xiao, Z., Valencia, P.M., Radovic-Moreno, A.F. & Farokhzad, O.C. Targeted polymeric therapeutic nanoparticles: design, development and clinical translation. Chemical Society reviews 41, 2971-3010.

  • Bramsen, J.B. et al. Improved silencing properties using small internally segmented interfering RNAs. Nucleic acids research 35, 5886-5897 (2007).

  • Rose, S.D. et al. Functional polarity is introduced by Dicer processing of short substrate RNAs. Nucleic acids research 33, 4140-4156 (2005).

  • Grimm, D. & Kay, M.A. Combinatorial RNAi: a winning strategy for the race against evolving targets? Mol Ther 15, 878-888 (2007).

  • Liu, Y.P. et al. Combinatorial RNAi against HIV-1 using extended short hairpin RNAs. Mol Ther 17, 1712-1723 (2009).

  • Mulhbacher, J., St-Pierre, P. & Lafontaine, D.A. Therapeutic applications of ribozymes and riboswitches. Curr Opin Pharmacol 10, 551-556 (2010).

  • Win, M.N. & Smolke, C.D. Higher-order cellular information processing with synthetic RNA devices. Science 322, 456- 460 (2008).

  • McNamara, J.O., 2nd et al. Cell type-specific delivery of siRNAs with aptamer-siRNA chimeras. Nature biotechnology 24, 1005-1015 (2006).

  • Zhou, J., Li, H., Li, S., Zaia, J. & Rossi, J.J. Novel dual inhibitory function aptamer-siRNA delivery system for HIV-1 therapy. Mol Ther 16, 1481-1489 (2008).

  • Dassie, J.P. et al. Systemic administration of optimized aptamer-siRNA chimeras promotes regression of PSMAexpressing tumors. Nature biotechnology 27, 839-849 (2009).

  • Topp, S. & Gallivan, J.P. Emerging applications of riboswitches in chemical biology. ACS Chem Biol 5, 139-148 (2010).

  • Gu, F. et al. Precise engineering of targeted nanoparticles by using self-assembled biointegrated block copolymers. Proceedings of the National Academy of Sciences of the United States of America 105, 2586-2591 (2008).

  • Abe, N., Abe, H. & Ito, Y. Dumbbell-shaped nanocircular RNAs for RNA interference. Journal of the American Chemical Society 129, 15108-15109 (2007).

  • Afonin, K.A. et al. Activation of different split functionalities on re-association of RNA-DNA hybrids. Nature nanotechnology 8, 296-304 (2013).

  • Hoerter, J.A., Krishnan, V., Lionberger, T.A. & Walter, N.G. siRNA-like double-stranded RNAs are specifically protected against degradation in human cell extract. PLoS One 6, e20359 (2011).

OPEN ACCESS

Journal + Issues

Search