degruyter.com uses cookies to store information that enables us to optimize our website and make browsing more comfortable for you. To learn more about the use of cookies, please read our Privacy Policy. OK

Evaluation of low-template DNA profiles using peak heights

Christopher D. Steelehttp://orcid.org/0000-0002-6110-0086 1 , Matthew Greenhalgh 2 ,  and David J. Balding 3
  • 1 University College London – UGI, United Kingdom of Great Britain and Northern Ireland
  • 2 Orchid Cellmark Ltd., Abingdon Business Park, Blacklands Way, Abingdon OX14 1YX, United Kingdom of Great Britain and Northern Ireland
  • 3 University of Melbourne – Centre for Systems Genomics, Australia
Christopher D. SteeleORCID iD: http://orcid.org/0000-0002-6110-0086, Matthew Greenhalgh and David J. Balding

Abstract

In recent years statistical models for the analysis of complex (low-template and/or mixed) DNA profiles have moved from using only presence/absence information about allelic peaks in an electropherogram, to quantitative use of peak heights. This is challenging because peak heights are very variable and affected by a number of factors. We present a new peak-height model with important novel features, including over- and double-stutter, and a new approach to dropin. Our model is incorporated in open-source R code likeLTD. We apply it to 108 laboratory-generated crime-scene profiles and demonstrate techniques of model validation that are novel in the field. We use the results to explore the benefits of modeling peak heights, finding that it is not always advantageous, and to assess the merits of pre-extraction replication. We also introduce an approximation that can reduce computational complexity when there are multiple low-level contributors who are not of interest to the investigation, and we present a simple approximate adjustment for linkage between loci, making it possible to accommodate linkage when evaluating complex DNA profiles.

  • Balding, D. J. (2013): “Evaluation of mixed-source, low-template DNA profiles in forensic science,” Proc. Natl. Acad. Sci. USA 110, 12241–12246.

    • Crossref
    • Export Citation
  • Balding, D. J. and J. Buckleton (2009): “Interpreting low template DNA profiles,” Forensic Sci. Int.-Gen., 4, 1–10.

    • Crossref
    • Export Citation
  • Balding, D. J. and C. D. Steele (2015): Weight-of-evidence for Forensic DNA Profiles, 2nd Ed., London: John Wiley & Sons.

  • Benschop, C. C. G., S. Y. Yoo and T. Sijen (2015): “Split DNA over replicates or perform one amplification?,” Forensic Sci. Int.-Gen. Supplement Series, 5, e532–e533.

    • Crossref
    • Export Citation
  • Bleka, Ø., G. Storvik and P. Gill (2016): “EuroForMix: An open source software based on a continuous model to evaluate STR DNA profiles from a mixture of contributors with artefacts,” Forensic Sci. Int.-Gen., 21, 35–44.

    • Crossref
    • Export Citation
  • Bright, J.-A., J. M. Curran and J. S. Buckleton (2013a): “Relatedness calculations for linked loci incorporating subpopulation effects,” Forensic Sci. Int.-Gen., 7, 380–383.

    • Crossref
    • Export Citation
  • Bright, J.-A., D. Taylor, J. M. Curran and J. S. Buckleton (2013b): “Developing allelic and stutter peak height models for a continuous method of DNA interpretation,” Forensic Sci. Int.-Gen., 7, 96–304.

  • Bright, J.-A., I. W. Evett, D. Taylor, J. M. Curran and J. Buckleton (2015): “A series of recommended tests when validating probabilistic DNA profile interpretation software,” Forensic Sci. Int.-Gen., 14, 125–131.

    • Crossref
    • Export Citation
  • Brookes, C., J.-A. Bright, S. Harbison and J. Buckleton (2012): “Characterising stutter in forensic STR multiplexes,” Forensic Sci. Int.-Gen., 6, 58–63.

    • Crossref
    • Export Citation
  • Buckleton, J. and J. Curran (2008): “A discussion of the merits of random man not excluded and likelihood ratios,” Forensic Sci. Int.-Gen., 2, 343–348.

    • Crossref
    • Export Citation
  • Champod, C. (2013): “DNA transfer: informed judgment or mere guesswork?,” Front. Genet., 4, 300.

    • PubMed
    • Export Citation
  • Cowell, R. G., T. Graversen, S. L. Lauritzen and J. Mortera (2015): “Analysis of forensic DNA mixtures with artefacts,” J. Roy. Stat. Soc. C-App., 64, 1–48.

    • Crossref
    • Export Citation
  • Dørum, G., D. Kling, A. Tillmar, M. D. Vigeland and T. Egeland (2016): “Mixtures with relatives and linked markers,” Int. J. Legal Med., 130, 621–634.

    • Crossref
    • PubMed
    • Export Citation
  • Gill, P. and H. Haned (2013): “A new methodological framework to interpret complex DNA profiles using likelihood ratios,” Forensic Sci. Int.-Gen., 7, 251–263.

    • Crossref
    • Export Citation
  • Gill, P., J. Whitaker, C. Flaxman, N. Brown and J. Buckleton (2000): “An investigation of the rigor of interpretation rules for STRs derived from less than 100 pg of DNA,” Forensic Sci. Int., 112, 17–40.

    • Crossref
    • PubMed
    • Export Citation
  • Gill, P., C. H. Brenner, J. S. Buckleton, A. Carracedo, M. Krawczak, W. R. Mayr, N. Morling, M. Prinz, P. M. Schneider and B. S. Weir (2006): “DNA commission of the International Society of Forensic Genetics: Recommendations on the interpretation of mixtures,” Forensic Sci. Int., 160, 90–101.

    • Crossref
    • PubMed
    • Export Citation
  • Gill, P., J. Curran, C. Neumann, A. Kirkham, T. Clayton, J. Whitaker and J. Lambert (2008): “Interpretation of complex DNA profiles using empirical models and a method to measure their robustness,” Forensic Sci. Int.-Gen., 2, 91–103.

    • Crossref
    • Export Citation
  • Gill, P., L. Gusmão, H. Haned, W. R. Mayr, N. Morling, W. Parson, L. Prieto, M. Prinz, H. Schneider, P. M. Schneider and B. S. Weir (2012): “DNA commission of the International Society of Forensic Genetics: Recommendations on the evaluation of STR typing results that may include drop-out and/or drop-in using probabilistic methods,” Forensic Sci. Int.-Gen., 6, 679–688.

    • Crossref
    • Export Citation
  • Good, I. J. (1950): Probability and the weighing of evidence, Ann Arbor, MI, USA: JSTOR.

  • Graversen, T. and S. Lauritzen (2014): “Computational aspects of DNA mixture analysis,” Stat. Comput., 25, 527–541.

  • Haned, H., L. Pene, J. R. Lobry, A. B. Dufour and D. Pontier (2011): “Estimating the number of contributors to forensic DNA mixtures: does maximum likelihood perform better than maximum allele count?,” J. Forensic Sci., 56, 23–28.

    • Crossref
    • PubMed
    • Export Citation
  • Kelly, H., J.-A. Bright, J. S. Buckleton and J. M. Curran (2014): “Identifying and modelling the drivers of stutter in forensic DNA profiles,” Aust. J. Forensic Sci., 46, 194–203.

    • Crossref
    • Export Citation
  • Manabe, S., C. Kawai and K. Tamaki (2013): “Simulated approach to estimate the number and combination of known/unknown contributors in mixed DNA samples using 15 short tandem repeat loci,” Forensic Sci. Int.-Gen. Supplement Series, 4, e154–e155.

    • Crossref
    • Export Citation
  • McCord, B. R., J. M. Jung and E. A. Holleran (1993): “High resolution capillary electrophoresis of forensic DNA using a non-gel sieving buffer,” J Liq. Chromatogr. R. T., 16, 1963–1981.

    • Crossref
    • Export Citation
  • Mullen, K. M., D. Ardia, D. L. Gil, D. Windover, and J. Cline (2011): “DEoptim: An R package for global optimization by differential evolution,” J. Stat. Softw., 40, 1–26.

  • Nathakarnkitkool, S., P. J. Oefner, G. Bartsch, M. A. Chin and G. K. Bonn (1992): “High-resolution capillary electrophoretic analysis of DNA in free solution,” Electrophoresis, 13, 18–31.

    • Crossref
    • PubMed
    • Export Citation
  • Perlin, M. W., M. M. Legler, C. E. Spencer, J. L. Smith, W. P. Allan, J. L. Belrose and B. W. Duceman (2011): “Validating TrueAllele DNA mixture interpretation,” J. Forensic Sci., 56, 1430–1447.

    • Crossref
    • PubMed
    • Export Citation
  • Puch-Solis, R., L. Rodgers, A. Mazumder, S. Pope, I. Evett, J. Curran and D. Balding (2013): “Evaluating forensic DNA profiles using peak heights, allowing for multiple donors, allelic dropout and stutters,” Forensic Sci. Int.-Gen., 7, 555–563.

    • Crossref
    • Export Citation
  • Ruiz-Martinez, M. C., O. Salas-Solano, E. Carrilho, L. Kotler and B. L. Karger (1998): “A sample purification method for rugged and high-performance DNA sequencing by capillary electrophoresis using replaceable polymer solutions. A. Development of the cleanup protocol,” Anal. Chem., 70, 1516–1527.

    • Crossref
    • PubMed
    • Export Citation
  • Steele, C. D. and D. J. Balding (2014): “Choice of population database for forensic DNA profile analysis,” Sci. Justice, 54, 487–493.

    • Crossref
    • PubMed
    • Export Citation
  • Steele, C. D., M. Greenhalgh and D. J. Balding (2014a): “Verifying likelihoods for low template DNA profiles using multiple replicates,” Forensic Sci. Int.-Gen., 13, 82–89.

    • Crossref
    • Export Citation
  • Steele, C. D., D. S. Court and D. J. Balding (2014b): “Worldwide F ST estimates relative to five continental-scale populations,” Ann. Hum. Genet., 78, 468–477.

    • Crossref
    • Export Citation
  • Taylor, D., J. Buckleton and I. Evett (2015): “Testing likelihood ratios produced from complex DNA profiles,” Forensic Sci. Int.-Gen., 16, 165–171.

    • Crossref
    • Export Citation
  • Taylor, D., J.-A. Bright, C. McGoven, C. Hefford, T. Kalafut and J. Buckleton (2016): “Validating multiplexes for use in conjunction with modern interpretation strategies,” Forensic Sci. Int.-Gen., 20, 6–19.

    • Crossref
    • Export Citation
  • Tvedebrink, T., P. S. Eriksen, H. S. Mogensen and N. Morling (2009): “Estimating the probability of allelic drop-out of STR alleles in forensic genetics,” Forensic Sci. Int.-Gen., 3, 222–226.

    • Crossref
    • Export Citation
  • Williams, P. E., M. A. Marino, S. A. Del Rio, L. A. Turni and J. M. Devaney (1994): “Analysis of DNA restriction fragments and polymerase chain reaction products by capillary electrophoresis,” J. Chromatogr. A, 680, 525–540.

    • Crossref
    • PubMed
    • Export Citation
Purchase article
Get instant unlimited access to the article.
$42.00
Log in
Already have access? Please log in.


or
Log in with your institution

Journal + Issues

SAGMB publishes significant research on the application of statistical ideas to problems arising from computational biology. The range of topics includes linkage mapping, association studies, gene finding and sequence alignment, protein structure prediction, design and analysis of microarrary data, molecular evolution and phylogenetic trees, DNA topology, and data base search strategies.

Search