In recent years statistical models for the analysis of complex (low-template and/or mixed) DNA profiles have moved from using only presence/absence information about allelic peaks in an electropherogram, to quantitative use of peak heights. This is challenging because peak heights are very variable and affected by a number of factors. We present a new peak-height model with important novel features, including over- and double-stutter, and a new approach to dropin. Our model is incorporated in open-source
Balding, D. J. (2013): “Evaluation of mixed-source, low-template DNA profiles in forensic science,” Proc. Natl. Acad. Sci. USA 110, 12241–12246.
Balding, D. J. and J. Buckleton (2009): “Interpreting low template DNA profiles,” Forensic Sci. Int.-Gen., 4, 1–10.
Balding, D. J. and C. D. Steele (2015): Weight-of-evidence for Forensic DNA Profiles, 2nd Ed., London: John Wiley & Sons.
Benschop, C. C. G., S. Y. Yoo and T. Sijen (2015): “Split DNA over replicates or perform one amplification?,” Forensic Sci. Int.-Gen. Supplement Series, 5, e532–e533.
Bleka, Ø., G. Storvik and P. Gill (2016): “EuroForMix: An open source software based on a continuous model to evaluate STR DNA profiles from a mixture of contributors with artefacts,” Forensic Sci. Int.-Gen., 21, 35–44.
Bright, J.-A., J. M. Curran and J. S. Buckleton (2013a): “Relatedness calculations for linked loci incorporating subpopulation effects,” Forensic Sci. Int.-Gen., 7, 380–383.
Bright, J.-A., D. Taylor, J. M. Curran and J. S. Buckleton (2013b): “Developing allelic and stutter peak height models for a continuous method of DNA interpretation,” Forensic Sci. Int.-Gen., 7, 96–304.
Bright, J.-A., I. W. Evett, D. Taylor, J. M. Curran and J. Buckleton (2015): “A series of recommended tests when validating probabilistic DNA profile interpretation software,” Forensic Sci. Int.-Gen., 14, 125–131.
Brookes, C., J.-A. Bright, S. Harbison and J. Buckleton (2012): “Characterising stutter in forensic STR multiplexes,” Forensic Sci. Int.-Gen., 6, 58–63.
Buckleton, J. and J. Curran (2008): “A discussion of the merits of random man not excluded and likelihood ratios,” Forensic Sci. Int.-Gen., 2, 343–348.
Champod, C. (2013): “DNA transfer: informed judgment or mere guesswork?,” Front. Genet., 4, 300.
Cowell, R. G., T. Graversen, S. L. Lauritzen and J. Mortera (2015): “Analysis of forensic DNA mixtures with artefacts,” J. Roy. Stat. Soc. C-App., 64, 1–48.
Dørum, G., D. Kling, A. Tillmar, M. D. Vigeland and T. Egeland (2016): “Mixtures with relatives and linked markers,” Int. J. Legal Med., 130, 621–634.
Gill, P. and H. Haned (2013): “A new methodological framework to interpret complex DNA profiles using likelihood ratios,” Forensic Sci. Int.-Gen., 7, 251–263.
Gill, P., J. Whitaker, C. Flaxman, N. Brown and J. Buckleton (2000): “An investigation of the rigor of interpretation rules for STRs derived from less than 100 pg of DNA,” Forensic Sci. Int., 112, 17–40.
Gill, P., C. H. Brenner, J. S. Buckleton, A. Carracedo, M. Krawczak, W. R. Mayr, N. Morling, M. Prinz, P. M. Schneider and B. S. Weir (2006): “DNA commission of the International Society of Forensic Genetics: Recommendations on the interpretation of mixtures,” Forensic Sci. Int., 160, 90–101.
Gill, P., J. Curran, C. Neumann, A. Kirkham, T. Clayton, J. Whitaker and J. Lambert (2008): “Interpretation of complex DNA profiles using empirical models and a method to measure their robustness,” Forensic Sci. Int.-Gen., 2, 91–103.
Gill, P., L. Gusmão, H. Haned, W. R. Mayr, N. Morling, W. Parson, L. Prieto, M. Prinz, H. Schneider, P. M. Schneider and B. S. Weir (2012): “DNA commission of the International Society of Forensic Genetics: Recommendations on the evaluation of STR typing results that may include drop-out and/or drop-in using probabilistic methods,” Forensic Sci. Int.-Gen., 6, 679–688.
Good, I. J. (1950): Probability and the weighing of evidence, Ann Arbor, MI, USA: JSTOR.
Graversen, T. and S. Lauritzen (2014): “Computational aspects of DNA mixture analysis,” Stat. Comput., 25, 527–541.
Haned, H., L. Pene, J. R. Lobry, A. B. Dufour and D. Pontier (2011): “Estimating the number of contributors to forensic DNA mixtures: does maximum likelihood perform better than maximum allele count?,” J. Forensic Sci., 56, 23–28.
Kelly, H., J.-A. Bright, J. S. Buckleton and J. M. Curran (2014): “Identifying and modelling the drivers of stutter in forensic DNA profiles,” Aust. J. Forensic Sci., 46, 194–203.
Manabe, S., C. Kawai and K. Tamaki (2013): “Simulated approach to estimate the number and combination of known/unknown contributors in mixed DNA samples using 15 short tandem repeat loci,” Forensic Sci. Int.-Gen. Supplement Series, 4, e154–e155.
McCord, B. R., J. M. Jung and E. A. Holleran (1993): “High resolution capillary electrophoresis of forensic DNA using a non-gel sieving buffer,” J Liq. Chromatogr. R. T., 16, 1963–1981.
Mullen, K. M., D. Ardia, D. L. Gil, D. Windover, and J. Cline (2011): “DEoptim: An R package for global optimization by differential evolution,” J. Stat. Softw., 40, 1–26.
Nathakarnkitkool, S., P. J. Oefner, G. Bartsch, M. A. Chin and G. K. Bonn (1992): “High-resolution capillary electrophoretic analysis of DNA in free solution,” Electrophoresis, 13, 18–31.
Perlin, M. W., M. M. Legler, C. E. Spencer, J. L. Smith, W. P. Allan, J. L. Belrose and B. W. Duceman (2011): “Validating TrueAllele DNA mixture interpretation,” J. Forensic Sci., 56, 1430–1447.
Puch-Solis, R., L. Rodgers, A. Mazumder, S. Pope, I. Evett, J. Curran and D. Balding (2013): “Evaluating forensic DNA profiles using peak heights, allowing for multiple donors, allelic dropout and stutters,” Forensic Sci. Int.-Gen., 7, 555–563.
Ruiz-Martinez, M. C., O. Salas-Solano, E. Carrilho, L. Kotler and B. L. Karger (1998): “A sample purification method for rugged and high-performance DNA sequencing by capillary electrophoresis using replaceable polymer solutions. A. Development of the cleanup protocol,” Anal. Chem., 70, 1516–1527.
Steele, C. D. and D. J. Balding (2014): “Choice of population database for forensic DNA profile analysis,” Sci. Justice, 54, 487–493.
Steele, C. D., M. Greenhalgh and D. J. Balding (2014a): “Verifying likelihoods for low template DNA profiles using multiple replicates,” Forensic Sci. Int.-Gen., 13, 82–89.
Steele, C. D., D. S. Court and D. J. Balding (2014b): “Worldwide F ST estimates relative to five continental-scale populations,” Ann. Hum. Genet., 78, 468–477.
Taylor, D., J. Buckleton and I. Evett (2015): “Testing likelihood ratios produced from complex DNA profiles,” Forensic Sci. Int.-Gen., 16, 165–171.
Taylor, D., J.-A. Bright, C. McGoven, C. Hefford, T. Kalafut and J. Buckleton (2016): “Validating multiplexes for use in conjunction with modern interpretation strategies,” Forensic Sci. Int.-Gen., 20, 6–19.
Tvedebrink, T., P. S. Eriksen, H. S. Mogensen and N. Morling (2009): “Estimating the probability of allelic drop-out of STR alleles in forensic genetics,” Forensic Sci. Int.-Gen., 3, 222–226.
Williams, P. E., M. A. Marino, S. A. Del Rio, L. A. Turni and J. M. Devaney (1994): “Analysis of DNA restriction fragments and polymerase chain reaction products by capillary electrophoresis,” J. Chromatogr. A, 680, 525–540.
Cellmark Forensic Services, (Grant/Award Number: “CMD-PHD1”) Biotechnology and Biological Sciences Research Council, (Grant/Award Number: “507493”)