Accurately measuring epigenetic marks such as 5-methylcytosine (5-mC) and 5-hydroxymethylcytosine (5-hmC) at the single-nucleotide level, requires combining data from DNA processing methods including traditional (BS), oxidative (oxBS) or Tet-Assisted (TAB) bisulfite conversion. We introduce the R package
Äijö, T., Y. Huang, H. Mannerström, L. Chavez, A. Tsagaratou, A. Rao and H. Lähdesmäki (2016): “A probabilistic generative model for quantification of dna modifications enables analysis of demethylation pathways,” Genome Biol., 17, 49.
Aryee, M. J., A. E. Jaffe, H. Corrada-Bravo, C. Ladd-Acosta, A. P. Feinberg, K. D. Hansen and R. A. Irizarry (2014): “Minfi: A flexible and comprehensive Bioconductor package for the analysis of Infinium DNA Methylation microarrays,” Bioinformatics, 30, 1363–1369.
Ayer, M., H. D. Brunk, G. M. Ewing, W. T. Reid and E. Silverman (1955): “An empirical distribution function for sampling with incomplete information,” Ann. Math. Statist., 26, 641–647.
Booth, M. J., M. R. Branco, G. Ficz, D. Oxley, F. Krueger, W. Reik and S. Balasubramanian (2012): “Quantitative sequencing of 5-methylcytosine and 5-hydroxymethylcytosine at single-base resolution,” Science, 336, 934–937.
Feinberg, A. P. (2018): “The key role of epigenetics in human disease prevention and mitigation,” N. Engl. J. Med., 378, 1323–1334.
Field, S. F., D. Beraldi, M. Bachman, S. K. Stewart, S. Beck and S. Balasubramanian (2015): “Accurate measurement of 5-methylcytosine and 5-hydroxymethylcytosine in human cerebellum dna by oxidative bisulfite on an array (oxbs-array),” PLoS One, 10, 1–12.
Houseman, E. A., K. C. Johnson and B. C. Christensen (2016): “Oxybs: estimation of 5-methylcytosine and 5-hydroxymethylcytosine from tandem-treated oxidative bisulfite and bisulfite dna,” Bioinformatics, 32, 2505–2507.
Huang, Y., W. A. Pastor, Y. Shen, M. Tahiliani, D. R. Liu and A. Rao (2010): “The behaviour of 5-hydroxymethylcytosine in bisulfite sequencing,” PLoS One, 5, 1–9.
Leek, J. T., W. E. Johnson, H. S. Parker, E. J. Fertig, A. E. Jaffe and J. D. Storey (2016): sva: Surrogate Variable Analysis, R package version 3.22.0.
Li, X., Y. Liu, T. Salz, K. D. Hansen and A. Feinberg (2016): “Whole-genome analysis of the methylome and hydroxymethylome in normal and malignant lung and liver,” Genome Res., 26, 1730–1741.
Mariani, C., J. Madzo, E. Moen, A. Yesilkanal and L. Godley (2013): “Alterations of 5-hydroxymethylcytosine in human cancers,” Cancers, 5, 786–814.
Nazor, K. L., M. J. Boland, M. Bibikova, B. Klotzle, M. Yu, V. L. Glenn-Pratola, J. P. Schell, R. L. Coleman, M. C. C. da Silva, U. Schmidt, S. E. Peterson, C. He, J. F. Loring and J.-B. Fan (2014): “Application of a low cost array-based technique – TAB-array – for quantifying and mapping both 5mc and 5hmc at single base resolution in human pluripotent stem cells,” Genomics, 104, 358–367.
Pfeifer, G. P., W. Xiong, M. A. Hahn and S.-G. Jin (2014): “The role of 5-hydroxymethylcytosine in human cancer,” Cell Tissue Res., 356, 631–641.
Qu, J., M. Zhou, Q. Song, E. E. Hong and A. D. Smith (2013): “Mlml: consistent simultaneous estimates of dna methylation and hydroxymethylation,” Bioinformatics, 29, 2645–2646.
Ritchie, M. E., B. Phipson, D. Wu, Y. Hu, C. W. Law, W. Shi and G. K. Smyth (2015): “limma powers differential expression analyses for RNA-sequencing and microarray studies,” Nucleic Acids Res., 43, e47.
Stewart, S. K., T. J. Morris, P. Guilhamon, H. Bulstrode, M. Bachman, S. Balasubramanian and S. Beck (2015): “oxbs-450k: A method for analysing hydroxymethylation using 450k beadchips,” Methods, 72(Supplement C), 9–15. (Epi)Genomics approaches and their applications.
Tahiliani, M., K. P. Koh, Y. Shen, W. A. Pastor, H. Bandukwala, Y. Brudno, S. Agarwal, L. M. Iyer, D. R. Liu, L. Aravind and A. Rao (2009): “Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian dna by mll partner tet1,” Science, 324, 930–935.
Thienpont, B., J. Steinbacher, H. Zhao, F. D’Anna, A. Kuchnio, A. Ploumakis, B. Ghesquière, L. V. Dyck, B. Boeckx, L. Schoonjans, E. Hermans, F. Amant, V. N. Kristensen, K. P. Koh, M. Mazzone, M. L. Coleman, T. Carell, P. Carmeliet and D. Lambrechts (2016): “Tumour hypoxia causes DNA hypermethylation by reducing TET activity,” Nature, 537, 63–68.
Xu, Z., J. A. Taylor, Y.-K. Leung, S.-M. Ho and L. Niu (2016): “oxbs-mle: an efficient method to estimate 5-methylcytosine and 5-hydroxymethylcytosine in paired bisulfite and oxidative bisulfite treated dna,” Bioinformatics, 32, 3667–3669.
Yu, M., G. Hon, K. Szulwach, C.-X. Song, L. Zhang, A. Kim, X. Li, Q. Dai, Y. Shen, B. Park, J.-H. Min, P. Jin, B. Ren and C. He (2012): “Base-resolution analysis of 5-hydroxymethylcytosine in the mammalian genome,” Cell, 149, 1368–1380.
This work was supported by the Strategic Action for Research in Health Sciences from the Institute of Health Carlos III [CP12/03080; PI15/00071]. The Strategic Action for Research in Health Sciences is an initiative from Carlos III Health Institute Madrid and the Spanish Ministry of Economy and Competitiveness and is co-funded with European Funds for Regional Development (FEDER). The work of Samara Kiihl was supported by FAPESP-Brazil [Funder Id: 10.13039/501100001807, 2013/00506-1; 2014/03374-1].