Mammalian Genomes Ease Location of Human DNA Functional Segments but Not Their Description

Lee A Newberg 1  and Charles E Lawrence 2
  • 1 New York State Department of Health Wadsworth Center & Rensselaer Polytechnic Institute Department of Computer Science
  • 2 Brown University Division of Applied Mathematics

Under the assumption that a significant motivation for sequencing the genomes of mammals is the resulting ability to help us locate and characterize functional DNA segments shared with humans, we have developed a statistical analysis to quantify the expected advantage. Examining uncertainty in terms of the width of a confidence interval, we show that uncertainty in the rate of nucleotide mutation can be shrunk by a factor of nearly four when nine mammals; human, chimpanzee, baboon, cat, dog, cow, pig, rat, mouse; are used instead of just two; human and mouse. Contrastingly, we show confidence interval shrinkage by a factor of only 1.5 for measurements of the distribution of nucleotides at an aligned sequence site. These additional genomes should greatly help in identifying conserved DNA sites, but would be much less effective at precisely describing the expected pattern of nucleotides at those sites.

Purchase article
Get instant unlimited access to the article.
$42.00
Log in
Already have access? Please log in.


or
Log in with your institution

Journal + Issues

SAGMB publishes significant research on the application of statistical ideas to problems arising from computational biology. The range of topics includes linkage mapping, association studies, gene finding and sequence alignment, protein structure prediction, design and analysis of microarrary data, molecular evolution and phylogenetic trees, DNA topology, and data base search strategies.

Search